-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbandit_dropout.py
600 lines (418 loc) · 21.6 KB
/
bandit_dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import torch
import torch.nn as nn
#from sklearn.gaussian_process import GaussianProcessRegressor
#from sklearn.gaussian_process import GaussianProcessRegressor
import numpy as np
import scipy.stats
import random
import torch
from torch.autograd import Variable
from torch import nn
import scipy.stats
from scipy.stats import norm
from itertools import chain
class random_dropout(nn.Module):
def __init__(self, p_min=0,p_max=1):
super(random_dropout, self).__init__()
self.p_min = p_min
self.p_max = p_max
def get_mask(self,x,p):
if torch.cuda.is_available():
mask = torch.Tensor(x.shape[1]).uniform_(0, 1).cuda() < p
else:
mask = torch.Tensor(x.shape[1]).uniform_(0, 1) < p
return mask.int()
def forward(self,x):
p = np.random.uniform(self.p_min,self.p_max)
mask = self.get_mask(x,p)
return (x*mask)/(1-p)
class homemade_dropout(nn.Module):
def __init__(self, p):
super(homemade_dropout, self).__init__()
self.p = p
def get_mask(self,x):
if torch.cuda.is_available():
mask = torch.Tensor(x.shape[1]).uniform_(0, 1).cuda() < self.p
else:
mask = torch.Tensor(x.shape[1]).uniform_(0, 1) < self.p
return mask.int()
def forward(self,x):
mask = self.get_mask(x)
return x*mask
class BernoulliBandit:
def __init__(self, means, seed=None):
'''Accept an array of K >= 2 floats in [0, 1] and (optionally)
a seed for a random number generator.'''
self.means = means
self.random = np.random.RandomState(seed)
# for tracking regret
self.dropout = nn.Dropoout(dropout_before_triggered)
self.k_star = np.argmax(means)
self.gaps = means[self.k_star] - means
self.regret = []
def get_K(self):
'''Return the number of actions.'''
return len(self.means)
def play(self, k):
'''Accept a parameter 0 <= k < K, logs the instant pseudo-regret,
and return the realization of a Bernoulli random variable with P(X=1)
being the mean of the given action.'''
self.regret.append(self.gaps[k])
samples = self.random.rand(self.get_K())
reward = int(samples[k] < self.means[k])
return reward
def get_cumulative_regret(self):
'''Return an array of the cumulative sum of pseudo-regret per round.'''
return np.cumsum(self.regret)
class egreedy_bandit_dropout(nn.Module):
def __init__(self, nb_buckets, nb_arms_per_bucket, dropout_min = 0.0, dropout_max = 0.5, epsilon = 0.50, p=0.2,epsilon_decroissant=False,batch_update=True):
super(egreedy_bandit_dropout, self).__init__()
self.triggered = False
self.bucket_boundaries = torch.Tensor(scipy.stats.norm.ppf(torch.linspace(1/nb_buckets, 1-1/nb_buckets ,nb_buckets-1)))
self.arms = torch.linspace(dropout_min, dropout_max, nb_arms_per_bucket)
self.epsilon = epsilon
self.nb_arms_per_bucket = nb_arms_per_bucket
self.nb_buckets = nb_buckets
self.dropout_before_triggered = nn.Dropout(p)
self.mu_hat = torch.zeros(nb_buckets, nb_arms_per_bucket)
self.cumulated_rewards = torch.zeros(nb_buckets, nb_arms_per_bucket)
self.nb_played = torch.zeros(nb_buckets, nb_arms_per_bucket)
self.last_played = torch.zeros(nb_buckets, nb_arms_per_bucket)
self.p=p
self.epsilon_decroissant = epsilon_decroissant
self.t = 0
self.batch_update = batch_update
self.dropout_rate_per_arm = None
self.update = True
def get_mask(self, dropout_rates):
mask = torch.lt(dropout_rates, torch.FloatTensor(dropout_rates.shape).uniform_(0, 1))
return mask.int()
def calculate_mu_hat(self):
self.mu_hat = self.cumulated_rewards/self.nb_played
def update_metrics(self, arms_chosen_for_each_bucket):
self.last_played = torch.zeros(self.nb_buckets, self.nb_arms_per_bucket)
self.last_played[torch.arange(self.nb_buckets), arms_chosen_for_each_bucket] = 1
self.nb_played += self.last_played
def egreedy(self) -> torch.Tensor:
"""
implementation of egreedy strategy for each bucket that correspond to a multi-armed bandit
Returns:
torch.Tensor(nb_buckets,): arms chosen for each bucket
"""
self.t += 1
self.calculate_mu_hat()
if self.epsilon_decroissant:
epsilon = self.epsilon * (1/np.sqrt(self.t))
else:
epsilon = self.epsilon
explore = (torch.Tensor(self.mu_hat.shape[0]).uniform_(0, 1) < epsilon).int()
arms_chosen_for_each_bucket = (1-explore) * torch.argmax(self.mu_hat, axis = 1) + explore * torch.randint(0, self.nb_arms_per_bucket, (self.mu_hat.shape[0],))
return arms_chosen_for_each_bucket
def get_dropout_rate_per_arm(self):
arms_chosen_for_each_bucket = self.egreedy()
self.update_metrics(arms_chosen_for_each_bucket)
self.dropout_rate_per_arm = self.arms[arms_chosen_for_each_bucket]
def get_dropout_rate_for_each_neurons(self, x):
dropout_rate_per_arm = self.dropout_rate_per_arm
x_bucket = torch.bucketize(x, self.bucket_boundaries)
return dropout_rate_per_arm[x_bucket.flatten()].reshape(x_bucket.shape)
def play(self, x):
dropout_rate = self.get_dropout_rate_for_each_neurons(x)
return torch.nan_to_num(x * self.get_mask(dropout_rate) / (1-dropout_rate))
def forward(self,x):
self.update = x.requires_grad
if self.triggered:
return self.play(x)
else:
return self.dropout_before_triggered(x)
class boltzmann_bandit_dropout(nn.Module):
def __init__(self, nb_buckets, nb_arms_per_bucket, dropout_min = 0.00, dropout_max = 0.50, c = 1, p=None, batch_update = True):
super(boltzmann_bandit_dropout, self).__init__()
self.triggered = False
self.bucket_boundaries = torch.tensor(norm.ppf(torch.linspace(1/nb_buckets, 1-1/nb_buckets ,nb_buckets-1)))
self.arms = torch.linspace(dropout_min, dropout_max, nb_arms_per_bucket)
self.p = (dropout_max + dropout_min)/2 if p is None else p
self.dropout_before_triggered = nn.Dropout(self.p)
self.c = c
self.eta = torch.full((nb_buckets,), c)
self.nb_arms_per_bucket = nb_arms_per_bucket
self.nb_buckets = nb_buckets
self.mu_hat = torch.ones(nb_buckets, nb_arms_per_bucket)
self.cumulated_rewards = torch.ones(nb_buckets, nb_arms_per_bucket)
self.nb_played = torch.ones(nb_buckets, nb_arms_per_bucket)
self.last_played = torch.zeros(nb_buckets, nb_arms_per_bucket)
self.last_played[:, int(np.floor(self.nb_arms_per_bucket/2))] = 1
self.arms_chosen_for_each_bucket = torch.full((nb_buckets,), int(np.floor(self.nb_arms_per_bucket/2)))
self.dropout_values = [[] for _ in range(self.nb_buckets)]
self.arms_to_update = torch.tensor([0])
self.choose_new_arms = True
self.batch_update = batch_update
def find_min_diff(self,arr):
n = len(arr)
arr = sorted(arr)
diff = np.infty
for i in range(n-1):
if arr[i+1] - arr[i] < diff:
diff = arr[i+1] - arr[i]
return max(diff, 0.1)
def get_mask(self, dropout_rates):
new_mask = torch.lt(dropout_rates, torch.FloatTensor(dropout_rates.shape).uniform_(0, 1))
self.mask = new_mask.int()
return self.mask
def calculate_mu_hat(self):
self.mu_hat = self.cumulated_rewards/self.nb_played
def softmax(self, probs):
e = np.exp(probs)
return e / e.sum()
def choose_arm_from_probs(self, probs):
return np.random.choice(list(range(self.nb_arms_per_bucket)), size=1, p = probs)[0]
def choose_arms_per_bucket(self) -> torch.Tensor:
"""
implementation of boltzman strategy for each bucket that correspond to a multi-armed bandit
Returns:
torch.Tensor(nb_buckets,): arms chosen for each bucket
"""
if self.choose_new_arms:
self.calculate_mu_hat()
probs = np.apply_along_axis(self.softmax , 0, self.eta * np.array(self.mu_hat.T)).T
arms_chosen_for_each_bucket = np.apply_along_axis(self.choose_arm_from_probs, 1, probs)
self.last_played = torch.zeros(self.nb_buckets, self.nb_arms_per_bucket)
self.last_played[torch.arange(self.nb_buckets), arms_chosen_for_each_bucket] = 1
self.arms_chosen_for_each_bucket = arms_chosen_for_each_bucket
self.choose_new_arms = False
return self.arms_chosen_for_each_bucket
def get_dropout_rate_per_arm(self):
dropout_rate_per_arm = self.arms[self.choose_arms_per_bucket()]
#for i in range(self.nb_buckets):
# self.dropout_values[i].append(dropout_rate_per_arm[i])
return dropout_rate_per_arm
def get_dropout_rate_for_each_neurons(self, x):
dropout_rate_per_arm = self.get_dropout_rate_per_arm()
x_bucket = torch.bucketize(x, self.bucket_boundaries)
self.dropout_rate = dropout_rate_per_arm[x_bucket.flatten()].reshape(x_bucket.shape)
return self.dropout_rate
def play(self, x):
dropout_rate = self.get_dropout_rate_for_each_neurons(x)
self.eta = np.full((self.nb_buckets,), self.c) * np.array(np.log(self.nb_played.sum(axis = 1)))/ np.apply_along_axis(self.find_min_diff, 1, self.mu_hat)
return_values = torch.nan_to_num(x * self.get_mask(dropout_rate) / (1-dropout_rate))
return return_values
def forward(self,x):
self.update = x.requires_grad
if self.triggered:
return self.play(x)
else:
for i in range(self.nb_buckets):
self.dropout_values[i].append(self.p)
return self.dropout_before_triggered(x)
class linucb_bandit_dropout(nn.Module):
def __init__(self, nb_buckets=16, dropout_min = 0.0, dropout_max = 0.5, epsilon = 0.50, p=0.2 , discretize_size=100, features_size=4,Lambda=0.1, batch_update = True,sigma=5,seed=None):
super(linucb_bandit_dropout, self).__init__()
self.triggered = False
self.bucket_boundaries = torch.Tensor(scipy.stats.norm.ppf(torch.linspace(1/nb_buckets, 1-1/nb_buckets ,nb_buckets-1)))
self.nb_buckets = nb_buckets
self.dropout_before_triggered = nn.Dropout(p)
#LinUCB
self.batch_update = batch_update
self.upper_bound_norme_theta = 1 # À mettre en argument
self.upper_bound_sigma = sigma # À mettre en argument
self.random = np.random.RandomState(seed)
self.discretize_size = discretize_size
self.discretize_structured_input = np.linspace(dropout_min,dropout_max,discretize_size)
self.theta_hat = self.random.uniform(0,1,(discretize_size, nb_buckets))
self.phi_X = np.array([[x**i for i in range(features_size)] for x in self.discretize_structured_input])
self.Lambda = Lambda
self.L = np.amax(np.linalg.norm(self.phi_X,axis=1))
self.V_t = np.array([np.eye(self.phi_X.shape[1]) * self.Lambda for _ in range(self.nb_buckets)])
self.B = np.zeros((self.nb_buckets,self.phi_X.shape[1]))
self.indice_batch = 1
self.epoch_dropout_rate = None
def get_mask(self, dropout_rates):
if (type(dropout_rates) != torch.Tensor) :
dropout_rates = torch.Tensor(dropout_rates)
mask = torch.lt(dropout_rates, torch.FloatTensor(dropout_rates.shape).uniform_(0, 1))
return mask.int()
def update_metrics(self, last_phi_t):
if (type(last_phi_t) == torch.Tensor):
self.last_phi_t = np.array(last_phi_t)
else:
self.last_phi_t = last_phi_t
def update_bandit(self,reward):
for context in range(self.nb_buckets):
phi_t = self.phi_X[int(self.last_phi_t[context]),:]
self.V_t[context] += np.outer(phi_t,phi_t)
self.B[context] += phi_t*reward
def choose_dropout_linucb(self):
if self.triggered:
self.indice_batch += 1
dropout_choosen = torch.zeros(self.nb_buckets)
last_phi_t = torch.zeros(self.nb_buckets)
if (self.indice_batch < 4):
last_phi_t = np.random.randint(0,self.discretize_size,self.nb_buckets)
dropout_choosen = self.discretize_structured_input[last_phi_t]
else:
delta = np.log(self.indice_batch)
alpha = self.upper_bound_sigma * np.sqrt(self.phi_X.shape[1] * np.log(1 + (self.indice_batch*(self.L**2)/self.Lambda)/delta)) + np.sqrt(self.Lambda*self.upper_bound_norme_theta)
for context in range(self.nb_buckets):
V_t_inv_context = np.linalg.inv(self.V_t[context,:,:])
B_context = self.B[context,:]
theta_hat_context = V_t_inv_context.dot(B_context)
f_x_hat_context = self.phi_X.dot(theta_hat_context.T)
upper_bound_context = alpha * (self.phi_X.dot(V_t_inv_context) * self.phi_X).sum(axis=1)
f_ucb = f_x_hat_context + upper_bound_context
action_choosen = np.argmax(f_ucb)
last_phi_t[context] = action_choosen
dropout_choosen[context] = self.discretize_structured_input[action_choosen]
self.update_metrics(last_phi_t)
return torch.Tensor(dropout_choosen)
def get_dropout_rate_for_each_neurons(self, x):
if self.batch_update:
dropout_rate_per_arm = self.choose_dropout_linucb()
else:
dropout_rate_per_arm = self.epoch_dropout_rate
x_bucket = torch.bucketize(x, self.bucket_boundaries)
return dropout_rate_per_arm[x_bucket.flatten()].reshape(x_bucket.shape)
def play(self, x):
dropout_rate = self.get_dropout_rate_for_each_neurons(x)
return torch.nan_to_num(x * self.get_mask(dropout_rate) / (1-dropout_rate))
def forward(self,x):
self.update = x.requires_grad
if self.update:
if self.triggered:
return self.play(x)
else:
return self.dropout_before_triggered(x)
else:
return x
class dynamic_linucb_bandit_dropout(nn.Module):
def __init__(self, nb_buckets=16, dropout_min = 0.0, dropout_max = 0.5, epsilon = 0.50, p=0.2 , discretize_size=100, features_size=4, Lambda=0.1, gamma = 0.995,sigma=5, batch_update = True ,seed=None):
super(dynamic_linucb_bandit_dropout, self).__init__()
self.triggered = False
self.bucket_boundaries = torch.Tensor(scipy.stats.norm.ppf(torch.linspace(1/nb_buckets, 1-1/nb_buckets ,nb_buckets-1)))
self.nb_buckets = nb_buckets
self.dropout_before_triggered = nn.Dropout(p)
#LinUCB
self.batch_update = batch_update
self.upper_bound_norme_theta = 1 # À mettre en argument
self.upper_bound_sigma = sigma # À mettre en argument
self.random = np.random.RandomState(seed)
self.discretize_size = discretize_size
self.discretize_structured_input = np.linspace(dropout_min,dropout_max,discretize_size)
self.theta_hat = self.random.uniform(0,1,(discretize_size, nb_buckets))
self.phi_X = np.array([[x**i for i in range(features_size)] for x in self.discretize_structured_input])
self.Lambda = Lambda
self.L = np.amax(np.linalg.norm(self.phi_X,axis=1))
self.V_t = np.array([np.eye(self.phi_X.shape[1]) * self.Lambda for _ in range(self.nb_buckets)])
self.identite_lambda = np.array([np.eye(self.phi_X.shape[1]) * self.Lambda for _ in range(self.nb_buckets)])
self.V_tilde_t = np.array([np.eye(self.phi_X.shape[1]) * self.Lambda for _ in range(self.nb_buckets)])
self.B = np.zeros((self.nb_buckets,self.phi_X.shape[1]))
self.indice_batch = 1
self.forget_factor = gamma
self.epoch_dropout_rate = None
def get_mask(self, dropout_rates):
if (type(dropout_rates) != torch.Tensor) :
dropout_rates = torch.Tensor(dropout_rates)
mask = torch.lt(dropout_rates, torch.FloatTensor(dropout_rates.shape).uniform_(0, 1))
return mask.int()
def update_metrics(self, last_phi_t):
if (type(last_phi_t) == torch.Tensor):
self.last_phi_t = np.array(last_phi_t)
else:
self.last_phi_t = last_phi_t
def update_bandit(self,reward):
for context in range(self.nb_buckets):
phi_t = self.phi_X[int(self.last_phi_t[context]),:]
self.V_t[context] = self.forget_factor*self.V_t[context] + np.outer(phi_t,phi_t) + (1-self.forget_factor)*self.identite_lambda[context]
self.V_tilde_t[context] = (self.forget_factor**2)*self.V_tilde_t[context] + np.outer(phi_t,phi_t) + (1-self.forget_factor**2)*self.identite_lambda[context]
self.B[context] = self.forget_factor*self.B[context] + phi_t*reward
def choose_dropout_linucb(self):
if self.triggered:
self.indice_batch += 1
dropout_choosen = torch.zeros(self.nb_buckets)
last_phi_t = torch.zeros(self.nb_buckets)
if (self.indice_batch < 4):
last_phi_t = np.random.randint(0,self.discretize_size,self.nb_buckets)
dropout_choosen = self.discretize_structured_input[last_phi_t]
else:
delta = np.log(self.indice_batch)
alpha = self.upper_bound_sigma * np.sqrt(self.phi_X.shape[1] * np.log(1 + (self.indice_batch*(self.L**2)/self.Lambda)/delta)) + np.sqrt(self.Lambda*self.upper_bound_norme_theta)
alpha = np.sqrt(self.Lambda*self.upper_bound_norme_theta) + self.upper_bound_sigma * np.sqrt((2*np.log(1/delta)) + self.phi_X.shape[1]*np.log(1+((self.upper_bound_norme_theta*(1-self.forget_factor**(2*(self.indice_batch-1))))/(self.Lambda*self.phi_X.shape[1]*(1-self.forget_factor**2)))) )
for context in range(self.nb_buckets):
V_t_inv_context = np.linalg.inv(self.V_t[context,:,:])
v_prime = V_t_inv_context.dot(self.V_tilde_t[context,:,:]).dot(V_t_inv_context)
B_context = self.B[context,:]
theta_hat_context = V_t_inv_context.dot(B_context)
f_x_hat_context = self.phi_X.dot(theta_hat_context.T)
upper_bound_context = alpha * (self.phi_X.dot(v_prime) * self.phi_X).sum(axis=1)
f_ucb = f_x_hat_context + upper_bound_context
action_choosen = np.argmax(f_ucb)
last_phi_t[context] = action_choosen
dropout_choosen[context] = self.discretize_structured_input[action_choosen]
self.update_metrics(last_phi_t)
return torch.Tensor(dropout_choosen)
def get_dropout_rate_for_each_neurons(self, x):
if self.batch_update:
dropout_rate_per_arm = self.choose_dropout_linucb()
else:
dropout_rate_per_arm = self.epoch_dropout_rate
x_bucket = torch.bucketize(x, self.bucket_boundaries)
return dropout_rate_per_arm[x_bucket.flatten()].reshape(x_bucket.shape)
def play(self, x):
dropout_rate = self.get_dropout_rate_for_each_neurons(x)
return torch.nan_to_num(x * self.get_mask(dropout_rate) / (1-dropout_rate))
def forward(self,x):
self.update = x.requires_grad
if self.update:
if self.triggered:
return self.play(x)
else:
return self.dropout_before_triggered(x)
else:
return x
class Standout(nn.Module):
def __init__(self, last_layer, alpha, beta):
#Taken from adaptative dropout article : https://arxiv.org/pdf/1909.09146.pdf
print("<<<<<<<<< THIS IS DEFINETLY A STANDOUT TRAINING >>>>>>>>>>>>>>>")
super(Standout, self).__init__()
self.pi = last_layer.weight
self.alpha = alpha
self.beta = beta
self.nonlinearity = nn.Sigmoid()
def forward(self, previous, current, p=0.5, deterministic=False):
# Function as in page 3 of paper: Variational Dropout
self.p = self.nonlinearity(self.alpha * previous.matmul(self.pi.t()) + self.beta)
self.mask = sample_mask(self.p)
# Deterministic version as in the paper
if(deterministic or torch.mean(self.p).data.cpu().numpy()==0):
return self.p * current
else:
return self.mask * current
def sample_mask(p):
"""Given a matrix of probabilities, this will sample a mask in PyTorch."""
if torch.cuda.is_available():
uniform = Variable(torch.Tensor(p.size()).uniform_(0, 1).cuda())
else:
uniform = Variable(torch.Tensor(p.size()).uniform_(0, 1))
mask = uniform < p
if torch.cuda.is_available():
mask = mask.type(torch.cuda.FloatTensor)
else:
mask = mask.type(torch.FloatTensor)
return mask
class random_dropout(nn.Module):
def __init__(self, p_min=0,p_max=1):
super(random_dropout, self).__init__()
self.p_min = p_min
self.p_max = p_max
def get_mask(self,x,p):
if torch.cuda.is_available():
mask = torch.Tensor(x.shape[1]).uniform_(0, 1).cuda() < p
else:
mask = torch.Tensor(x.shape[1]).uniform_(0, 1) < p
return mask.int()
def forward(self,x):
if x.requires_grad:
p = np.random.uniform(self.p_min,self.p_max)
mask = self.get_mask(x,p)
return (x*mask)/(1-p)
else:
return x