-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPFP-windows-major-work.py
747 lines (681 loc) · 29.6 KB
/
SPFP-windows-major-work.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 31 21:22:03 2018
@author: Geronimo Estellar Chen
"""
'''
If nothing is wrong, this program shall be the ultimate one and her peers'
abilities have been properly succeeded to her, albeit some little defects.
There are three things she will do.
1. Read the data from R, and the raw data which is also stored in the path.
2. Plot the spectra, and fit the result from R-fpca onto the authentic one.
Also, she can provide you informations about the principal components
via scatter plots. Sometimes you can find some clue from these messy dots.
3. Make classification via Neuro-Network or SVM, starting from reading the
principal components provided from R-fpca. Both the Neuro-Network and the
SVM classifiers are simple enough but promises a moderate performance,
their F1-scores in IIL/IIP SNe can reach 0.8-0.85.
I have choosen 6 small scale wavebands and two comprehensive wavebands.
Their feature elements, wavelength range and the number of principal
components are shown below. The wavelengths are in Angstron, at rest-frame.
elements: ['Halpha','Hbeta','Ca' ,'FeMg','FeOMgSi','S' ,'Na' ,'NaMg','Gap' ]
start: [6150 ,4600 ,8200 ,4200 ,4900 ,5250 ,5800 ,7700 ,7000 ]
end: [6800 ,4900 ,8900 ,4600 ,5250 ,5800 ,6150 ,8200 ,7400 ]
FPCA: [30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ,30 ]
Longbands:['Visible','Expand']
start: [4000 ,4000 ]
end: [7000 ,9000 ]
FPCA: [50 ,40 ]
To notice, there are still two gaps remain unsampled,
because they are telluric. [6800-7000,7400-7700].
Another Gap band is dangerous because H2O line within.
'''
###############################################################################
'''
Step 1
Import everything we need.
The dash here is unused, maybe I am going to make evaluation between my model
and the dash.
'''
import dash
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sys
from scipy.interpolate import interp1d, UnivariateSpline
from scipy.signal import savgol_filter
import sklearn
from sklearn import svm,metrics,preprocessing
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras import regularizers
import glob
###############################################################################
'''
Step 2
Read the csv file.
What we need are:
Principal functions, Components, Tags, Raw data.
Where:
EigFuns.csv, FPCS.csv, Category.csv, Rdata.csv
The obcat here stores a dataframe of all the information about type II SNe.
Its formation is identical to the sheet on wiserep (because I grabbed it).
Also, the formation of spcat dataframe is identical to the sheet on wiserep.
However, I add another two lines to record whether it is properly downloaded
and the filename (unfortunately, they are unuseful at all).
The principal components' parameters are also concatenated after the spcat,
which will be substantiated in step 2.2.
'''
DIR=os.getcwd()
obdir=DIR+'/CAT/OB/'
spdir=DIR+'/CAT/SP/'
obcat=pd.concat([pd.read_csv(obdir+'OBII.csv'),\
pd.read_csv(obdir+'OBIIP.csv'),\
pd.read_csv(obdir+'OBIIL.csv'),\
pd.read_csv(obdir+'OBIIb.csv'),\
pd.read_csv(obdir+'OBIIn.csv')],ignore_index=True)
spcat=pd.concat([pd.read_csv(spdir+'SPII.csv'),\
pd.read_csv(spdir+'SPIIP.csv'),\
pd.read_csv(spdir+'SPIIL.csv'),\
pd.read_csv(spdir+'SPIIb.csv'),\
pd.read_csv(spdir+'SPIIn.csv')],ignore_index=True)
waverescaller=pd.read_csv('WaveRescaller-All.csv')
highz=obcat[(obcat['Type']=='SN IIP')&(obcat['Redshift']>0.04)]['Obj. Name']
highz=np.array(highz)
def reader(element='Ca'):
element0=element
element=DIR+'/FPCA-'+element+'/'
fpcs=pd.concat([pd.read_csv(element+'FPCS.csv'),\
pd.read_csv(element+'FPCS2.csv')],ignore_index=True)
filename=pd.concat([pd.read_csv(element+'Rcat.csv'),\
pd.read_csv(element+'restcat.csv')],ignore_index=True)
EigFuns=np.transpose(np.array(pd.read_csv(element+'EigFuns.csv')))
raw=pd.concat([pd.read_csv(element+'Rdata.csv'),\
pd.read_csv(element+'restdata.csv')])
grid=np.array(pd.read_csv(element+'GRID.csv')).flatten()
muest=pd.read_csv(element+'muest.csv')
muest=np.array(muest).flatten()
[[trash,ShortWave,LongWave,Shorten]]\
=np.array(waverescaller[waverescaller['Elements']==element0]).tolist()
return fpcs,filename,EigFuns,raw,grid,muest,ShortWave,LongWave,Shorten
###############################################################################
'''
Step 2.1
Reconstruct the wavelength grid
'''
def rescale_the_wave(raw,grid,ShortWave,LongWave,Shorten):
raw['Wavelength']=raw['Wavelength']\
*(LongWave-ShortWave+Shorten*2)+ShortWave-Shorten
grid=grid*(LongWave-ShortWave+Shorten*2)+ShortWave-Shorten
return raw,grid
###############################################################################
'''
Step 2.2
Link the spectra to the type etc in the filename category.
That is quite interesting that some data are overlapped, like categoryout
and fpcsout, comparing to spcat. But unfortunately, I am too lazy to fix
this defect, hope your RAM is big enough.
An interesting thing, (something)out like rawout, muestout are idling outside
the functions, while the element or the waveband is settled, (something) raw
and muest will take action, just in the function.
'''
def catlink(filename):
category={'Id':[],'Name':[],'Type':[],'Redshift':[],'Spectra Date':[]}
for i in np.array(filename):
j=i[0]
Id=int(j.split('_')[0])
Name=j.split('_',1)[1].split('.ascii')[0]
Type=np.array(obcat[obcat['Obj. Name']==Name]['Type'])[0]
Redshift=np.array(obcat[obcat['Obj. Name']==Name]['Redshift'])[0]
SpecDat=np.array(spcat[spcat['Id']==Id]['Obs. Date'])[0]
category['Id'].append(Id)
category['Name'].append(Name)
category['Type'].append(Type)
category['Redshift'].append(Redshift)
category['Spectra Date'].append(SpecDat)
category=pd.DataFrame(category)
return category
rawout={}
muestout={}
gridout={}
eigout={}
fpcsout={}
categoryout={}
for i in waverescaller['Elements']:
fpcs,filename,EigFuns,raw,grid,muest,ShortWave,LongWave,Shorten\
=reader(element=i)
category=catlink(filename)
raw,grid=rescale_the_wave(raw,grid,ShortWave,LongWave,Shorten)
fpcs.rename(columns=lambda x:x.replace('V',i), inplace=True)
rawout[i]=raw
gridout[i]=grid
muestout[i]=muest
eigout[i]=EigFuns
fpcsout[i]=fpcs
categoryout[i]=category
fpcs['Id']=category['Id']
spcat=pd.merge(spcat,fpcs,how='left',on='Id')
del fpcs,filename,EigFuns,raw,grid,muest,ShortWave,LongWave,Shorten
###############################################################################
print('Thankyou for your patient waiting, all the data has been prepared now.')
#%%
'''
Up to now, Every data has been loaded.
Maybe it is because I am programming on a TF card, loading the data is
extreamely slow. As a consequence, I used an cell-spliter (as is shown
under the ### spliter and above this paragraf). If you are using spyder
and you want to amend the codes, you can skip loading the data --every
spyder users should know that.
'''
###############################################################################
'''
Step 3
Extract the pictures for a preview.
We will plot:
1. Functional Principal Components --TwoDimShowing, AllPlotIterater.
2. How the Spectra evolve with time in the FPCA parametric space
--TwoDimLink, LinkPlotIterater.
3. Estimated Spectra, Choose Different FPC level --EstimatedSpectra.
4. Real Spectra, 500 gridpoints --RealSpectra.
5. The Really Real Spectra --Really.
The examples:
TwoDimShowing('Halpha','Hbeta',1,1,spcat)
'''
def TwoDimShowing(element1,element2,v1,v2,category,paintother=True):
category2=category[['Id','Type',\
element1+str(v1),\
element2+str(v2)]].copy()
category2=category2.dropna()
IIPdata=category2[category2['Type']=='SN IIP']
IIndata=category2[category2['Type']=='SN IIn']
IIbdata=category2[category2['Type']=='SN IIb']
IILdata=category2[category2['Type']=='SN IIL']
IIdata=category2[category2['Type']=='SN II']
if paintother==True:
plt.scatter(IIdata[element1+str(v1)],\
IIdata[element2+str(v2)],label='SN II')
plt.scatter(IIbdata[element1+str(v1)],\
IIbdata[element2+str(v2)],label='SN IIb')
plt.scatter(IIndata[element1+str(v1)],\
IIndata[element2+str(v2)],label='SN IIn')
plt.scatter(IIPdata[element1+str(v1)],\
IIPdata[element2+str(v2)],label='SN IIP')
plt.scatter(IILdata[element1+str(v1)],\
IILdata[element2+str(v2)],label='SN IIL')
xmin=category2[element1+str(v1)].min()
xmax=category2[element1+str(v1)].max()
ymin=category2[element2+str(v2)].min()
ymax=category2[element2+str(v2)].max()
if np.size(xmin)>1:xmin=np.array(xmin)[0]
if np.size(xmax)>1:xmax=np.array(xmax)[0]
if np.size(ymin)>1:ymin=np.array(ymin)[0]
if np.size(ymax)>1:ymax=np.array(ymax)[0]
plt.xlim(xmin,xmax)
plt.ylim(ymin,ymax)
return
def TwoDimLink(element1,element2,v1,v2,category,SNtype,color,points=5):
category2=category[['Id','Type','Obj. Name','Obs. Date',\
element1+str(v1),\
element2+str(v2)]].copy()
category2=category2.dropna()
category2=category2[category2['Type']==SNtype]
j=0
k=[]
for i in category2['Obj. Name'].sort_values():
if j!=i:
k.append(i)
j=i
for i in k:
if category2[category2['Obj. Name']==i].shape[0]>points:
pldata=category2[category2['Obj. Name']==i]
pldata=pldata.sort_values('Obs. Date')
plt.plot(pldata[element1+str(v1)],\
pldata[element2+str(v2)],\
c=color,alpha=0.3)
plt.scatter(pldata[element1+str(v1)].iloc[0],\
pldata[element2+str(v2)].iloc[0],\
c=color,label=SNtype+' start')
plt.scatter(pldata[element1+str(v1)].iloc[-1],\
pldata[element2+str(v2)].iloc[-1],\
c=color,marker='x',label=SNtype+' end')
return
def AllPlotIterater(location='twodimplots',\
element=['Halpha','Ca','Hbeta',\
'S','FeOMgSi','FeMg',\
'Na','NaMg','Gap'],\
dimension_omitter=[5,5,5,5,5,5,5,5,5]):
category=spcat
for i in np.arange(np.size(element)):
for j in np.arange(dimension_omitter[i]):
for k in np.arange(np.size(element)):
for l in np.arange(dimension_omitter[k]):
if k<i:continue
if k==i and l<=j:continue
TwoDimShowing(element[i],element[k],j+1,l+1,category)
plt.legend(loc='best')
fig=plt.gcf()
fig.set_size_inches(8,6)
plt.xlabel(element[i]+str(j+1))
plt.ylabel(element[k]+str(l+1))
plt.savefig(location+'/'\
+element[i]+str(j)+element[k]+str(l)+'.png')
#plt.savefig(location+'/'\
# +element[i]+str(j)+element[k]+str(l)+'.eps')
plt.close('all')
return
def LinkPlotIterater(location='twodimlinks',\
element=['Halpha','Ca','Hbeta','S','FeOMgSi','FeMg',\
'Na','NaMg','Gap'],\
dimension_omitter=[5,5,5,5,5,5,5,5,5]):
category=spcat
for i in np.arange(np.size(element)):
for j in np.arange(dimension_omitter[i]):
for k in np.arange(np.size(element)):
for l in np.arange(dimension_omitter[k]):
if k<i:continue
if k==i and l<=j:continue
plt.plot([],[],c='b',label='SN IIP')
plt.plot([],[],c='r',label='SN IIL')
plt.scatter([],[],marker='o',c='k',label='First-Observed')
plt.scatter([],[],marker='x',c='k',label='Last-Observed')
plt.legend(loc='best')
TwoDimLink(element[i],element[k],j+1,l+1,\
category,'SN IIP','b',points=10)
TwoDimLink(element[i],element[k],j+1,l+1,\
category,'SN IIL','r',points=2)
plt.xlabel(element[i]+str(j+1))
plt.ylabel(element[k]+str(l+1))
fig=plt.gcf()
fig.set_size_inches(8,6)
plt.savefig(location+'/'\
+element[i]+str(j)+element[k]+str(l)+'.png')
#plt.savefig(location+'/'\
# +element[i]+str(j)+element[k]+str(l)+'.eps')
plt.close('all')
return
def RealSpectra(a,element='Expand',label=None):
raw=rawout[element]
pldata=raw[raw['ID']==a]
plt.plot(pldata['Wavelength'],pldata['Flux'],label=label)
return
def EstimatedSpectra(a,element='Expand',power=10,label=None):
grid=gridout[element]
muest=muestout[element]
fpcs=fpcsout[element]
category=categoryout[element]
EigFuns=eigout[element]
pldata=np.dot(fpcs[category['Id']==a].iloc[:,0:power]\
,EigFuns.transpose()[0:power]).flatten()
pldata=pldata+muest
plt.plot(grid,pldata,label=label)
return
def spl(a,number):
f1=interp1d(a[:,0],a[:,1])
f2=UnivariateSpline(a[:,0],a[:,1])
wavn=np.linspace(a[:,0].min(),a[:,0].max(),num=number)
anew=np.array([wavn,f1(wavn)-f2(wavn)])
return np.transpose(anew)
def Really(a,deredshift=True,label=None,sgf=False,ctr=False,reg=False):
file=glob.glob('*/'+str(a)+'_*.ascii')[0]
obname=spcat[spcat['Id']==a]['Obj. Name'].iloc[0]
z=obcat[obcat['Obj. Name']==obname]['Redshift'].iloc[0]
pldata=np.genfromtxt(file)
if deredshift==True:pldata[:,0]=pldata[:,0]/(1+z)
if sgf==True:pldata[:,1]=savgol_filter(pldata[:,1],21,1)
if ctr==True:pldata=spl(pldata,5000)
if reg==True:pldata[:,1]=preprocessing.scale(pldata[:,1])
plt.plot(pldata[:,0],pldata[:,1],label=label,c='k')
return
###############################################################################
'''
Step 3.1.
The Function defined in this part are specially for plotting in the paper.
Here, we will plot:
1. The composition of data: objects and spectra.
2. Every step in processing the data.
2.1. De-redshift.
2.2. Savitz-Golay filtering and interpolate.
2.3. Window selection.
2.4. Reconstruct the spectra from FPCA.
3. Two or Three paradigms, good one or bad one.
'''
def plot_spectra_pie(location='plotout'):
name=['II #1656','IIP #910','IIb #773','IIn #1188','IIL #241']
count=[1656,910,773,1188,241]
plt.pie(count,labels=name,explode=[0.1,0.1,0.1,0.1,0.1])
plt.axis('equal')
plt.title('The Number of every type II (subtype) Supernovae\' Spectra')
plt.savefig(location+'/spectracount.png')
plt.savefig(location+'/spectracount.eps')
plt.close('all')
return
def plot_object_pie(location='plotout'):
name=['II #952','IIP #221','IIb #99','IIn #386','IIL #15']
count=[952,221,99,386,15]
plt.pie(count,labels=name,explode=[0.1,0.1,0.1,0.1,0.1])
plt.axis('equal')
plt.title('The Number of every type II (subtype) Supernovae\' Object')
plt.savefig(location+'/objectcount.png')
plt.savefig(location+'/objectcount.eps')
plt.close('all')
return
def rawplot(a=45232,location='plotout'):
SNname=spcat[spcat['Id']==a].loc[:,'Obj. Name'].iloc[0]
date=spcat[spcat['Id']==45232].loc[:,'Obs. Date'].iloc[0]
Really(a,label='ID'+str(a)+' '+SNname+' '+date)
Really(a,label='Savitz-Golay Filter',sgf=True)
plt.xlabel('Rest Frame Wavelength (A)')
plt.ylabel('Flux')
plt.legend(loc='best')
plt.title('De-Redshifted Raw Data and Savitz-Golay Filtered')
plt.savefig(location+'/sgf'+str(a)+'.png')
plt.savefig(location+'/sgf'+str(a)+'.eps')
plt.close('all')
return
def continuum_remover(a=45232):
SNname=spcat[spcat['Id']==a].loc[:,'Obj. Name'].iloc[0]
date=spcat[spcat['Id']==45232].loc[:,'Obs. Date'].iloc[0]
Really(a,sgf=True,ctr=True,reg=True)
plt.xlabel('Rest Frame Wavelength (A)')
plt.ylabel('Renormalized Flux in Arbitrary Unit')
return
'''
Sorry, something seems not working.
Here, I was intending to plot the masks of different wave windows.
However, It is a little bit hard compensae the x- and y- axis scale.
'''
def element_illustrator(a=45232):
continuum_remover(a)
plt.ylim(-2,6)
for i in range(9):
sw=waverescaller.iloc[i,1]
lw=waverescaller.iloc[i,2]
plt.fill([sw,sw,lw,lw],[-2,6,6,-2],alpha=0.4,
label=waverescaller.iloc[i,0])
return
###############################################################################
'''
Step 4
Here, I will use some algorithms to solemnly analyse the
problem. Algorithms will be sealed into functions,
because the dataset is rather small. Then, by inserting
different parameters inwards, the functions will return
the accuracy, recall, etc.
Firstly, let us prepare the useable stuffs
---- Precision, Recall, F1-score.
It is okay if you want to call this as Step 3.0.
Also, I prepared a data spliter function here, which will be useful
in splitting the training and testing sets. If further requirements
about the data comes, just fix this function.
mulitdataspliter is designed to spearate multiple-taged datasets.
To notice, the multidataspliter has not been finished, I will enaviliable it
to yield training- and testing-sets in onehot form, which will be essential
for the neuronetworkk.
Something should shut up! I know the amount of type IIL is small!!!
'''
def scoring(confusion_matrix):
cm=np.array(confusion_matrix)
tp,tn,fp,fn=cm[0],cm[1],cm[2],cm[3]
prec1=tp/(tp+fp)
reca1=tp/(tp+fn)
prec2=tn/(tn+fn)
reca2=tn/(tn+fp)
prec=(prec1+prec2)/2
reca=(reca1+reca2)/2
f1sc1=2/(1/prec1+1/reca1)
f1sc2=2/(1/prec2+1/reca2)
f1sc=(f1sc1+f1sc2)/2
#if tn/tp>0.5 or tp/tn>0.5:print('The testing set is biased.')
#if np.sum(cm)<40:print('The testing set is too small.')
return prec,reca,f1sc
def dataspliter(symmetricity,type1,type2,element,dimension_omitter,testsize):
category=spcat[(spcat['Type']==type1)|(spcat['Type']==type2)]
category2=category[['Id','Obj. Name','Type','Obs. Date']].copy()
for i in range(np.size(element)):
for j in range(dimension_omitter[i]):
category2[element[i]+str(j+1)]=category[element[i]+str(j+1)]
category3=category2.dropna()
X1=category3[category3['Type']==type1]
X2=category3[category3['Type']==type2]
Y1=X1[['Id','Obj. Name','Type','Obs. Date']]
Y2=X2[['Id','Obj. Name','Type','Obs. Date']]
X1=X1.drop(['Id','Obj. Name','Type','Obs. Date'],axis=1)
X2=X2.drop(['Id','Obj. Name','Type','Obs. Date'],axis=1)
if symmetricity==True:
if X1.shape[0]>X2.shape[0]:
X1,trash1,Y1,trash2\
=train_test_split(X1,Y1,test_size=1-X2.shape[0]/X1.shape[0])
else:
X2,trash1,Y2,trash2\
=train_test_split(X2,Y2,test_size=1-X1.shape[0]/X2.shape[0])
X=np.array(pd.concat([X1,X2],ignore_index=True))
Y=np.array(pd.concat([Y1,Y2],ignore_index=True))
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=testsize)
Y_test_out=Y_test
Y_test=Y_test[:,2]
Y_train=Y_train[:,2]
return X_train,X_test,Y_train,Y_test,Y_test_out
'''
From now on, it is the unfinished multidataspliter.
If you are vacant, please don't forget to finish it.
'''
def multidataspliter(symmetricity,types,dimension_omitter,testsize
,onehot=False):
X,Y=[],[]
for i in types:
X.append(fpcs[category['Type']==i])
Y.append(fpcs[category['Type']==i])
if symmetricity==True:
sizes=[]
for i in range(np.size(X)):
sizes.append(X[i].shape)
small=sizes.min()
for i in range(np.size(X)):
trash1,X[i],trash2,Y[i]=train_test_split(X[i],Y[i]\
,test_size=small/sizes[i])
X=np.array(pd.concat(X,ignore_index=True))
Y=np.array(pd.concat(Y,ignore_index=True))
if onehot==True:
Y
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=testsize)
Y_test_out=Y_test
Y_test=Y_test[:,2]
return X_train,X_test,Y_train,Y_test,Y_test_out
###############################################################################
'''
Step 4.1
The old-fashioned SVM method in classification.
In the confusion matrix, I regard the type IIP as the positive
and type IIL as the negative.
In the clfout, the well-trained SVM classifier will be given here.
You can just use clfout(X) to acquire the result, the output is
like ['SN IIL', 'SN IIP'...].
An confusion_matrix will also returned, which will be used to
calculate the F1-score.
I also prepared a dimension_omitter here, because not all fpcs
scores are important, maybe the first 5 will be enough. It is
necessary to refine the dimension_omitter, cause we should not
only consider cutting the tail, but also popping out the middle.
Tips in using clf.predict_proba:
there are two columns, the first column is the probablity of type1
and the second column is the probablity of type2, because type1
shows before type2 in the dataset.
What if C=8000000?
'''
def svming(type1='SN IIP',type2='SN IIL',testsize=0.2,\
symmetricity=True,\
element=['Halpha' ,'Ca' ,'Hbeta',\
'S' ,'FeOMgSi' ,'FeMg' ,\
'Na' ,'NaMg' ,'Gap' ],\
dimension_omitter=[30,30,30,30,30,30,30,30,30],verbose=0,\
kernel='rbf',degree=80,C=3020):
#3.1. Divide the data into training and testing sets.
X_train,X_test,Y_train,Y_test,Y_test_out\
=dataspliter(symmetricity,type1,type2,element,dimension_omitter,testsize)
#3.2. Start training.
Y_test=np.array(Y_test.tolist())
clf=svm.SVC(tol=10**-6,kernel=kernel,degree=degree,C=C,cache_size=1000,\
probability=True)
clf=clf.fit(X_train,Y_train)
#3.3. Do the prediction specially on the training set.
Z=clf.predict(X_test)
Z2=clf.predict_proba(X_test)[:,1]
Z=(Z==type1)#Z will be boolean, while Z2 will be the probablity.
if abs(Z2[0]-Z[0])>0.5:Z2=1-Z2
Y_test=(Y_test==type1)
Z=np.array(Z,dtype=int)
Y_test=np.array(Y_test,dtype=int)
clfout=clf.predict_proba
#3.4. The confusion matrix.
true_positive=np.sum((Z==1)&(Y_test==1))
true_negative=np.sum((Z==0)&(Y_test==0))
false_positive=np.sum((Z==1)&(Y_test==0))
false_negative=np.sum((Z==0)&(Y_test==1))
confusion_matrix=np.array([true_positive,true_negative,\
false_positive,false_negative])
#3.5. The probablity given by the machine.
return confusion_matrix,clfout,X_test,Y_test,Z2,Y_test_out
###############################################################################
'''
Step 4.2.
Let us seal the Neuro-Network into the function.
Like the SVM function discribed before, we can also define the types,
redshifts and the test size.
Unfortunately, adding l1 and l2 regularization cannot increase the performance
whatsoever, please just set it to zero.
Here, the function also return the predicted outcome and the test-set,
because that can be useful in plotting ROC curve.
'''
def neuroing(type1='SN IIP',type2='SN IIL',testsize=0.2,epoch=2000,\
element=['Halpha' ,'Ca' ,'Hbeta',\
'S' ,'FeOMgSi' ,'FeMg' ,\
'Na' ,'NaMg' ,'Gap' ],\
dimension_omitter=[30,30,30,30,30,30,30,30,30],verbose=0,\
symmetricity=True,middle_units1=40,l1=0,l2=0):
#3.1. Prepare the dataset. When symmetricity is true, a symmetric dataset
#will be given, number'IIL'=number'IIP'.
X_train,X_test,Y_train,Y_test,Y_test_out\
=dataspliter(symmetricity,type1,type2,element,dimension_omitter,testsize)
#because of keras, I need to change the formation of Y.
Y_train=np.array(np.array(Y_train==type1),dtype='float32')
Y_test=np.array(np.array(Y_test==type1),dtype='float32')
#3.2. Construct the neuro-network.
model=Sequential()
model.add(Dense(units=middle_units1,\
activation='relu',input_dim=X_train.shape[1],
kernel_regularizer=regularizers.l1_l2(l1=l1,l2=l2)))
model.add(Dense(units=1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',\
optimizer='adam',metrics=['accuracy'])
model.fit(X_train,Y_train,epochs=epoch,verbose=verbose)
#3.3. Evaluation and export the neuro-network.
Z2=model.predict(X_test).flatten()
Z=(Z2>0.5)-0 #As before, Z2 is the probability and Z is bollean.
true_positive=np.sum((Z==1)&(Y_test==1))
true_negative=np.sum((Z==0)&(Y_test==0))
false_positive=np.sum((Z==1)&(Y_test==0))
false_negative=np.sum((Z==0)&(Y_test==1))
confusion_matrix=np.array([true_positive,true_negative,\
false_positive,false_negative])
netout=model.predict
return confusion_matrix,netout,X_test,Y_test,Z2,Y_test_out
###############################################################################
'''
Step 4.3.
Training and modeling with multiple tags in SVM.
Here, I will try to distinguish all IIP/IIL/IIb/IIn subclasses via SVM.
Unfortunately, I don't know how to construct a confusion matrix for mulitple
tags, it is not as simple as yes/no problem. So, for now, the function will
only return the accuracy.
This part is unfinished, because of the work load and the importance.
Maybe, I should only focus on IIP/IIL?
To notice, the confusion matrix in multi-classifying problem can be large,
please make it sure your scoring() function is compatible.
'''
def multisvming():
return confusion_matrix,svmout,X_test,Y_test,Z2,Y_test_out
###############################################################################
'''
Step 5
Evaluate the model.
1. We will integrate the training and evaluating parts into the program.
Then, start a loop and acquire the average F1-socre.
2. Print the ROC curve of neuro-network.
3. Count the spectra and the object that often mislead the classifier.
Please be well aware what you are doing before starting averagef1(), because
running a neuro-network on keras is not as fast as expected. If method is set
to be 'neuro', the iteration parameter ite is better smaller than 20.
'''
def averagef1(method='svm',ite=200,**kwangs):
if method=='svm':
function=svming
if method=='neuro':
function=neuroing
precs,recas,f1scs=[],[],[]
for i in range(ite):
cm0,trash1,trash2,trash3,trash4,trash5=function(**kwangs)
prec,reca,f1sc=scoring(cm0)
precs.append(prec)
recas.append(reca)
f1scs.append(f1sc)
precs,recas,f1scs=np.array(precs),np.array(recas),np.array(f1scs)
return np.array([[np.average(precs),np.average(recas),np.average(f1scs)],\
[np.std(precs),np.std(recas),np.std(f1scs)]])
def rocplot(Y_test,Z2):
fpr,tpr,trash=sklearn.metrics.roc_curve(Y_test,Z2,drop_intermediate=False)
plt.plot(fpr,tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
return
###############################################################################
'''
Step 6.
In this part, I would like to count two things: how many times the spectrum
is calculated, how many times the machine mistaken the spectrum.
By the way, I like the metaphor about the black sheep.
Sorry, this is a mistake, I should have arranged the whole program more
carefully. Here, cat1 and cat1 should match type1 and type2 in kwangs.
The cat1 and cat2 are prepared for counting sheets.
I also plot the troublemakers, of which get mistaken higher than 90%
Till 2018.8.1, this part is not compatible to multi-windows scenario.
It is a copy from other former programmes.
'''
def counting_black_sheep(method='svm',ite=200,\
type1='SN IIP',type2='SN IIL',**kwangs):
cat=spcat.loc[(spcat['Type']==type1)|(spcat['Type']==type2)]\
.copy()
cat['Test']=0
cat['Fail']=0
cat=cat.set_index('Id')
if method=='svm':
function=svming
if method=='neuro':
function=neuroing
for i in range(ite):
cm,netout,X_test,Y_test,Z2,Y_test_out=function(type1,type2,**kwangs)
cat.loc[Y_test_out[:,0],'Test']=cat.loc[Y_test_out[:,0],'Test']+1
Z=(Z2>0.5)
wrong=Y_test_out[Z!=Y_test][:,0]
cat.loc[wrong,'Fail']=cat.loc[wrong,'Fail']+1
return cat
def PlotTroubleMaker(method='svm',ite=200,dirname='troublemaker',\
type1='SN IIP',type2='SN IIL',**kwangs):
cat=counting_black_sheep(method,ite,type1,type2,**kwangs)
catfail=cat[cat['Fail']/cat['Test']>0.9].reset_index()
for i in catfail['Id']:
Really(i)
SNname=catfail[catfail['Id']==i]['Name'].iloc[0]
SNtype=catfail[catfail['Id']==i]['Type'].iloc[0]
test=catfail[catfail['Id']==i]['Test'].iloc[0]
fail=catfail[catfail['Id']==i]['Fail'].iloc[0]
plt.title('The Troublemaker Plot\n'
'Name: '+SNname+' ID: '+str(i)+' Type: '+SNtype
+' Fail/Test: '+str(fail)+'/'+str(test))
fig=plt.gcf()
fig.set_size_inches(18.5,9)
plt.savefig(dirname+'/'+str(i),dpi=400)
plt.close('all')
return