forked from ggerganov/whisper.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert-h5-to-ggml.py
212 lines (179 loc) · 7.35 KB
/
convert-h5-to-ggml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Convert Hugging Face fine-tuned models to ggml format
#
# Usage:
#
# git clone https://github.com/openai/whisper
# git clone https://github.com/ggerganov/whisper.cpp
# git clone https://huggingface.co/openai/whisper-medium
#
# python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper .
#
# This script is similar to "convert-pt-to-ggml.py"
#
# For more info:
#
# https://github.com/ggerganov/whisper.cpp/issues/157
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from pathlib import Path
from transformers import WhisperForConditionalGeneration
conv_map = {
'self_attn.k_proj' : 'attn.key',
'self_attn.q_proj' : 'attn.query',
'self_attn.v_proj' : 'attn.value',
'self_attn.out_proj' : 'attn.out',
'self_attn_layer_norm' : 'attn_ln',
'encoder_attn.q_proj' : 'cross_attn.query',
'encoder_attn.v_proj' : 'cross_attn.value',
'encoder_attn.out_proj' : 'cross_attn.out',
'encoder_attn_layer_norm' : 'cross_attn_ln',
'fc1' : 'mlp.0',
'fc2' : 'mlp.2',
'final_layer_norm' : 'mlp_ln',
'encoder.layer_norm.bias' : 'encoder.ln_post.bias',
'encoder.layer_norm.weight' : 'encoder.ln_post.weight',
'encoder.embed_positions.weight': 'encoder.positional_embedding',
'decoder.layer_norm.bias' : 'decoder.ln.bias',
'decoder.layer_norm.weight' : 'decoder.ln.weight',
'decoder.embed_positions.weight': 'decoder.positional_embedding',
'decoder.embed_tokens.weight' : 'decoder.token_embedding.weight',
'proj_out.weight' : 'decoder.proj.weight',
}
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 4:
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1)
dir_model = Path(sys.argv[1])
dir_whisper = Path(sys.argv[2])
dir_out = Path(sys.argv[3])
encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8"))
encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8"))
hparams = json.load((dir_model / "config.json").open("r", encoding="utf8"))
# Add this block to handle missing 'max_length'
if "max_length" not in hparams:
hparams["max_length"] = hparams.get("max_target_positions", 448)
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
#code.interact(local=locals())
n_mels = hparams["num_mel_bins"]
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
filters = torch.from_numpy(f[f"mel_{n_mels}"])
dir_tokenizer = dir_model
fname_out = dir_out / "ggml-model.bin"
tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8"))
# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 4:
use_f16 = False
fname_out = dir_out / "ggml-model-f32.bin"
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_source_positions"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["encoder_attention_heads"]))
fout.write(struct.pack("i", hparams["encoder_layers"]))
fout.write(struct.pack("i", hparams["max_length"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
fout.write(struct.pack("i", hparams["decoder_layers"]))
fout.write(struct.pack("i", hparams["num_mel_bins"]))
fout.write(struct.pack("i", use_f16))
fout.write(struct.pack("i", filters.shape[0]))
fout.write(struct.pack("i", filters.shape[1]))
for i in range(filters.shape[0]):
for j in range(filters.shape[1]):
fout.write(struct.pack("f", filters[i][j]))
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
fout.write(struct.pack("i", len(tokens)))
tokens = sorted(tokens.items(), key=lambda x: x[1])
for key in tokens:
text = bytearray([byte_decoder[c] for c in key[0]])
fout.write(struct.pack("i", len(text)))
fout.write(text)
list_vars = model.state_dict()
for name in list_vars.keys():
# this seems to not be used
# ref: https://github.com/huggingface/transformers/blob/9a5b84a0076a04fe9596da72e8668069d4f09ea0/src/transformers/models/whisper/modeling_whisper.py#L1099-L1106
if name == "proj_out.weight":
print('Skipping', name)
continue
src = name
nn = name
if name != "proj_out.weight":
nn = nn.split(".")[1:]
else:
nn = nn.split(".")
if nn[1] == "layers":
nn[1] = "blocks"
if ".".join(nn[3:-1]) == "encoder_attn.k_proj":
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key"
else:
mapped = conv_map[".".join(nn[3:-1])]
name = ".".join(nn[:3] + [mapped] + nn[-1:])
else:
name = ".".join(nn)
name = conv_map[name] if name in conv_map else name
print(src, ' -> ', name)
data = list_vars[src].squeeze().numpy()
data = data.astype(np.float16)
# reshape conv bias from [n] to [n, 1]
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " , name , " to shape: ", data.shape)
n_dims = len(data.shape)
print(name, n_dims, data.shape)
# looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1
if use_f16:
if n_dims < 2 or \
name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias" or \
name == "encoder.positional_embedding" or \
name == "decoder.positional_embedding":
print(" Converting to float32")
data = data.astype(np.float32)
ftype = 0
else:
data = data.astype(np.float32)
ftype = 0
# header
str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str_)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " , fname_out)
print("")