-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmodule.py
219 lines (194 loc) · 10.8 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import json
import torch
import torch.nn as nn
from torch.nn import functional as F
import transformers
from transformers import BertModel, BertPreTrainedModel
class ModifiedFocalLoss(nn.Module):
def __init__(self, alpha=0, gamma=0.7, reduction='mean', eps=1e-6):
super().__init__()
if reduction not in ['mean', 'none', 'sum']:
raise NotImplementedError('Reduction {} not implemented.'.format(reduction))
self.reduction = reduction
self.alpha = alpha
self.gamma = gamma
self.eps = eps
def forward(self, probs, target):
probs = torch.clamp(probs, min=self.eps, max=1-self.eps)
target = F.one_hot(target, num_classes=probs.size(1))
p_t = torch.where(target == 1, probs, 1 - probs)
losses = - 1 * (1 + self.alpha - p_t) ** self.gamma * torch.log(p_t)
return self._reduce(losses)
def _reduce(self, losses):
if self.reduction == 'mean':
return losses.mean()
elif self.reduction == 'sum':
return losses.sum()
else:
return losses
class G2PW(BertPreTrainedModel):
def __init__(self, model_source, labels, chars, pos_tags,
use_conditional=False, param_conditional=None,
use_focal=False, param_focal=None,
use_pos=False, param_pos=None):
super().__init__(model_source)
self.num_labels = len(labels)
self.num_chars = len(chars)
self.num_pos_tags = len(pos_tags)
self.bert = BertModel(self.config)
self.classifier = nn.Linear(self.config.hidden_size, self.num_labels)
self.use_conditional = use_conditional
self.param_conditional = param_conditional
if self.use_conditional:
conditional_affect_location = self.param_conditional['affect_location']
target_size = self.config.hidden_size if conditional_affect_location == 'emb' else self.num_labels
if self.param_conditional['bias']:
self.descriptor_bias = nn.Embedding(1, target_size)
if self.param_conditional['char-linear']:
self.char_descriptor = nn.Embedding(self.num_chars, target_size)
if self.param_conditional['pos-linear']:
self.pos_descriptor = nn.Embedding(self.num_pos_tags, target_size)
if self.param_conditional['char+pos-second']:
self.second_order_descriptor = nn.Embedding(self.num_chars * self.num_pos_tags, target_size)
if self.param_conditional['char+pos-second_lowrank']:
assert not self.param_conditional['char+pos-second']
assert 0 < self.param_conditional['lowrank_size'] < target_size
self.second_lowrank_descriptor = nn.Sequential(
nn.Embedding(self.num_chars * self.num_pos_tags, self.param_conditional['lowrank_size']),
nn.Linear(self.param_conditional['lowrank_size'], target_size)
)
if self.param_conditional['char+pos-second_fm']:
assert not self.param_conditional['char+pos-second']
assert 0 < self.param_conditional['fm_size']
self.second_fm_char_emb = nn.Sequential(
nn.Embedding(self.num_chars, self.param_conditional['fm_size'] * target_size),
nn.Unflatten(1, (target_size, self.param_conditional['fm_size']))
)
self.second_fm_pos_emb = nn.Sequential(
nn.Embedding(self.num_pos_tags, self.param_conditional['fm_size'] * target_size),
nn.Unflatten(1, (target_size, self.param_conditional['fm_size']))
)
if self.param_conditional['fix_mode']:
assert all([not self.param_conditional[x] for x in ['bias', 'char-linear', 'pos-linear', 'char+pos-second', 'char+pos-second_lowrank', 'char+pos-second_fm']])
assert self.param_conditional['affect_location'] == 'softmax'
count_dict = json.load(open(self.param_conditional['count_json']))
if self.param_conditional['fix_mode'] == 'count_distr:char':
char_fix_count = torch.tensor(
[[count_dict['by_char'][char].get(label, 0.) for label in labels] for char in chars]
)
self.char_fix_emb = nn.parameter.Parameter(
char_fix_count / char_fix_count.sum(dim=-1, keepdim=True),
requires_grad=False)
elif self.param_conditional['fix_mode'] == 'count_distr:char+pos':
char_pos_fix_count = torch.tensor(
[[count_dict['by_char_pos'][f'{char}-{pos}'].get(label, 0.)
if f'{char}-{pos}' in count_dict['by_char_pos'] else 0.
for label in labels]
for char in chars for pos in pos_tags]
)
self.char_pos_fix_emb = nn.parameter.Parameter(
char_pos_fix_count / char_pos_fix_count.sum(dim=-1, keepdim=True),
requires_grad=False)
else:
raise Exception
self.use_focal = use_focal
self.param_focal = param_focal
self.use_pos = use_pos
self.param_pos = param_pos
if self.use_pos and self.param_pos['pos_joint_training']:
self.pos_classifier = nn.Linear(self.config.hidden_size, self.num_pos_tags)
def _weighted_softmax(self, logits, weights, eps):
max_logits, _ = torch.max(logits, dim=-1, keepdim=True)
weighted_exp_logits = torch.exp(logits - max_logits) * weights
norm = torch.sum(weighted_exp_logits, dim=-1, keepdim=True)
probs = weighted_exp_logits / norm
probs = torch.clamp(probs, min=eps, max=1-eps)
return probs
def _get_char_pos_ids(self, char_ids, pos_ids):
return char_ids * self.num_pos_tags + pos_ids
def _get_pos_loss_scaling_when_using_focal(self, phoneme_probs, label_ids):
phoneme_probs = phoneme_probs.detach()
phoneme_target = F.one_hot(label_ids, num_classes=phoneme_probs.size(1))
phoneme_p_t = torch.where(phoneme_target == 1, phoneme_probs, 1 - phoneme_probs)
avg_phoneme_p_t = phoneme_p_t.mean()
scaling = (1 + self.param_focal['alpha'] - avg_phoneme_p_t) ** self.param_focal['gamma']
return scaling
def forward(self, input_ids, token_type_ids, attention_mask, phoneme_mask, char_ids, position_ids, pos_ids=None, label_ids=None, eps=1e-6):
transformers_major_ver = int(transformers.__version__.split('.')[0])
if transformers_major_ver >= 4:
sequence_output, pooled_output = self.bert(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
return_dict=False
)
else:
sequence_output, pooled_output = self.bert(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask
)
batch_size = input_ids.size(0)
orig_selected_hidden = sequence_output[torch.arange(batch_size), position_ids]
selected_hidden = orig_selected_hidden
if self.use_conditional:
if (self.param_conditional['char+pos-second']
or self.param_conditional['char+pos-second_lowrank']
or self.param_conditional['char+pos-second_fm']
or self.param_conditional['pos-linear']
or self.param_conditional['fix_mode'] == 'count_distr:char+pos'):
pred_pos_ids = pos_ids if self.training or not self.param_pos['pos_joint_training'] \
else self.pos_classifier(orig_selected_hidden).argmax(dim=-1) # teacher mode while training
affect_terms = []
if self.param_conditional['bias']:
bias_tensor = self.descriptor_bias(torch.zeros_like(char_ids))
affect_terms.append(bias_tensor)
if self.param_conditional['char-linear']:
affect_terms.append(self.char_descriptor(char_ids))
if self.param_conditional['pos-linear']:
affect_terms.append(self.pos_descriptor(pred_pos_ids))
if self.param_conditional['char+pos-second']:
char_pos_ids = self._get_char_pos_ids(char_ids, pred_pos_ids)
affect_terms.append(self.second_order_descriptor(char_pos_ids))
if self.param_conditional['char+pos-second_lowrank']:
char_pos_ids = self._get_char_pos_ids(char_ids, pred_pos_ids)
affect_terms.append(self.second_lowrank_descriptor(char_pos_ids))
if self.param_conditional['char+pos-second_fm']:
affect_terms.append(
torch.sum(
self.second_fm_char_emb(char_ids) * self.second_fm_pos_emb(pred_pos_ids),
dim=-1
)
)
affect_hidden = sum(affect_terms)
if self.param_conditional['fix_mode'] == 'count_distr:char':
phoneme_mask = phoneme_mask * F.embedding(char_ids, self.char_fix_emb)
elif self.param_conditional['fix_mode'] == 'count_distr:char+pos':
char_pos_ids = self._get_char_pos_ids(char_ids, pred_pos_ids)
phoneme_mask = phoneme_mask * F.embedding(char_pos_ids, self.char_pos_fix_emb)
elif self.param_conditional['affect_location'] == 'emb':
selected_hidden = selected_hidden * affect_hidden
elif self.param_conditional['affect_location'] == 'softmax':
phoneme_mask = phoneme_mask * torch.sigmoid(affect_hidden)
else:
raise Exception
logits = self.classifier(selected_hidden)
probs = self._weighted_softmax(logits, phoneme_mask, eps)
if label_ids is not None:
if self.use_focal:
loss_layer = ModifiedFocalLoss(alpha=self.param_focal['alpha'], gamma=self.param_focal['gamma'])
loss = loss_layer(probs, label_ids)
else:
loss_layer = nn.NLLLoss()
log_probs = torch.log(probs)
loss = loss_layer(log_probs, label_ids)
pos_logits = None
if self.use_pos and pos_ids is not None and self.param_pos['pos_joint_training']:
pos_logits = self.pos_classifier(orig_selected_hidden)
loss_fct = nn.CrossEntropyLoss()
pos_loss = loss_fct(pos_logits, pos_ids)
scaling = self._get_pos_loss_scaling_when_using_focal(probs, label_ids) if self.use_focal else 1.
loss += self.param_pos['weight'] * scaling * pos_loss
return probs, loss, pos_logits
else:
return probs