-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathutils.py
161 lines (130 loc) · 4.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import re
import logging
import sys
class RunningAverage:
def __init__(self):
self.values = []
def add(self, val):
self.values.append(val)
def add_all(self, vals):
self.values += vals
def get(self):
if len(self.values) == 0:
return None
return sum(self.values) / len(self.values)
def flush(self):
self.values = []
def wordize_and_map(text):
words = []
index_map_from_text_to_word = []
index_map_from_word_to_text = []
while len(text) > 0:
match_space = re.match(r'^ +', text)
if match_space:
space_str = match_space.group(0)
index_map_from_text_to_word += [None] * len(space_str)
text = text[len(space_str):]
continue
match_en = re.match(r'^[a-zA-Z0-9]+', text)
if match_en:
en_word = match_en.group(0)
word_start_pos = len(index_map_from_text_to_word)
word_end_pos = word_start_pos + len(en_word)
index_map_from_word_to_text.append((word_start_pos, word_end_pos))
index_map_from_text_to_word += [len(words)] * len(en_word)
words.append(en_word)
text = text[len(en_word):]
else:
word_start_pos = len(index_map_from_text_to_word)
word_end_pos = word_start_pos + 1
index_map_from_word_to_text.append((word_start_pos, word_end_pos))
index_map_from_text_to_word += [len(words)]
words.append(text[0])
text = text[1:]
return words, index_map_from_text_to_word, index_map_from_word_to_text
def tokenize_and_map(tokenizer, text):
words, text2word, word2text = wordize_and_map(text)
tokens = []
index_map_from_token_to_text = []
for word, (word_start, word_end) in zip(words, word2text):
word_tokens = tokenizer.tokenize(word)
if len(word_tokens) == 0 or word_tokens == ['[UNK]']:
index_map_from_token_to_text.append((word_start, word_end))
tokens.append('[UNK]')
else:
current_word_start = word_start
for word_token in word_tokens:
word_token_len = len(re.sub(r'^##', '', word_token))
index_map_from_token_to_text.append(
(current_word_start, current_word_start + word_token_len))
current_word_start = current_word_start + word_token_len
tokens.append(word_token)
index_map_from_text_to_token = text2word
for i, (token_start, token_end) in enumerate(index_map_from_token_to_text):
for token_pos in range(token_start, token_end):
index_map_from_text_to_token[token_pos] = i
return tokens, index_map_from_text_to_token, index_map_from_token_to_text
def _load_config(config_path):
import importlib.util
spec = importlib.util.spec_from_file_location('__init__', config_path)
config = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config)
return config
default_config_dict = {
'manual_seed': 1313,
'model_source': 'bert-base-chinese',
'window_size': 32,
'num_workers': 2,
'use_mask': True,
'use_char_phoneme': False,
'use_conditional': True,
'param_conditional': {
'affect_location': 'softmax',
'bias': True,
'char-linear': True,
'pos-linear': False,
'char+pos-second': True,
'char+pos-second_lowrank': False,
'lowrank_size': 0,
'char+pos-second_fm': False,
'fm_size': 0,
'fix_mode': None,
'count_json': 'train.count.json'
},
'lr': 5e-5,
'val_interval': 200,
'num_iter': 10000,
'use_focal': False,
'param_focal': {
'alpha': 0.0,
'gamma': 0.7
},
'use_pos': True,
'param_pos ': {
'weight': 0.1,
'pos_joint_training': True,
'train_pos_path': 'train.pos',
'valid_pos_path': 'dev.pos',
'test_pos_path': 'test.pos'
}
}
def load_config(config_path, use_default=False):
config = _load_config(config_path)
if use_default:
for attr, val in default_config_dict.items():
if not hasattr(config, attr):
setattr(config, attr, val)
elif isinstance(val, dict):
d = getattr(config, attr)
for dict_k, dict_v in val.items():
if dict_k not in d:
d[dict_k] = dict_v
return config
def get_logger(file_path):
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
output_file_handler = logging.FileHandler(file_path)
stdout_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(output_file_handler)
logger.addHandler(stdout_handler)
return logger