-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathddpg.py
200 lines (144 loc) · 6.5 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import tensorflow as tf
tf.enable_eager_execution()
from collections import deque
import random
import numpy as np
class ReplayBuffer(object):
def __init__(self, buffer_size, random_seed=123):
"""
The right side of the deque contains the most recent experiences
"""
self.buffer_size = buffer_size
self.count = 0
self.buffer = deque()
random.seed(random_seed)
def add(self, s, a, r, t, s2):
experience = (s, a, r, t, s2)
if self.count < self.buffer_size:
self.buffer.append(experience)
self.count += 1
else:
self.buffer.popleft()
self.buffer.append(experience)
def size(self):
return self.count
def sample_batch(self, batch_size):
batch = []
if self.count < batch_size:
batch = random.sample(self.buffer, self.count)
else:
batch = random.sample(self.buffer, batch_size)
s_batch = np.array([_[0][0] for _ in batch], dtype='float32')
a_batch = np.array([_[1][0] for _ in batch], dtype='float32')
r_batch = np.array([_[2] for _ in batch])
t_batch = np.array([_[3] for _ in batch])
s2_batch = np.array([_[4][0] for _ in batch], dtype='float32')
return s_batch, a_batch, r_batch, t_batch, s2_batch
def clear(self):
self.buffer.clear()
self.count = 0
class OrnsteinUhlenbeckActionNoise:
def __init__(self, mu, sigma=0.3, theta=.15, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
def __repr__(self):
return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
class Actor():
def __init__(self, filename='./saved/actor.h5'):
self.filename = filename
w = tf.initializers.random_uniform(-0.003, 0.003)
self.input = tf.keras.layers.Input(shape=(3,))
x = tf.keras.layers.Dense(400)(self.input)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.nn.relu)(x)
x = tf.keras.layers.Dense(300)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.nn.relu)(x)
out = tf.keras.layers.Dense(1, activation='tanh', kernel_initializer=w, bias_initializer=w)(x)
out = tf.keras.layers.Lambda(lambda x: x * 2)(out)
self.model = tf.keras.Model(inputs=[self.input], outputs=out)
self.batch_size = 64
self.model.summary()
self.optimizer = tf.train.AdamOptimizer(0.0001)
def save(self):
self.model.save_weights(self.filename)
def load(self):
self.model.load_weights(self.filename)
def train_step(self, state, action_gradients):
newState = tf.constant(state)
with tf.GradientTape() as tape:
predictions = self.model(newState)
gradient = tape.gradient(predictions, self.model.trainable_variables, -action_gradients)
actor_gradients = list(map(lambda x: tf.math.divide(x, self.batch_size), gradient))
self.optimizer.apply_gradients(zip(actor_gradients, self.model.trainable_variables))
class Critic():
def __init__(self, filename='./saved/critic.h5'):
self.filename = filename
w = tf.initializers.random_uniform(-0.003, 0.003)
self.input = tf.keras.layers.Input(shape=(3,))
x = tf.keras.layers.Dense(400)(self.input)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.nn.relu)(x)
x = tf.keras.layers.Dense(300)(x)
self.input_action = tf.keras.layers.Input(shape=(1,))
self.y = tf.keras.layers.Dense(300)(self.input_action)
add = tf.keras.layers.Add()([x, self.y])
merge = tf.keras.layers.Activation(tf.nn.relu)(add)
out = tf.keras.layers.Dense(1, kernel_initializer=w, bias_initializer=w)(merge)
self.model = tf.keras.Model(inputs=[self.input, self.input_action], outputs=out)
self.batch_size = 64
self.model.summary()
self.optimizer = tf.train.AdamOptimizer(0.001)
def train_step(self, state, action, predicted_q_value):
newState = tf.constant(state)
newAction = tf.constant(action)
with tf.GradientTape() as tape:
predictions = self.model([newState, newAction])
loss = tf.losses.mean_squared_error(predictions, predicted_q_value)
gradient = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradient, self.model.trainable_variables))
return predictions
def save(self):
self.model.save_weights(self.filename)
def load(self):
self.model.load_weights(self.filename)
def actor_gradient(self, state, actor):
newState = tf.constant(state)
with tf.GradientTape(persistent=True) as tape:
actions = actor.model(newState)
predictions = self.model([newState, actions])
gradient = tape.gradient(predictions, actions)
return gradient
class TargetActor(Actor):
def __init__(self):
super().__init__('./saved/target_actor.h5')
self.tau = 0.001
def hard_copy(self, actor_var):
[self.model.trainable_variables[i].assign(actor_var[i])
for i in range(len(self.model.trainable_variables))]
def update(self, actor_var):
[self.model.trainable_variables[i].assign(tf.multiply(actor_var[i], self.tau) \
+ tf.multiply(self.model.trainable_variables[i], 1. - self.tau))
for i in range(len(self.model.trainable_variables))]
class TargetCritic(Critic):
def __init__(self):
super().__init__('./saved/target_critic.h5')
self.tau = 0.001
def hard_copy(self, critic_var):
[self.model.trainable_variables[i].assign(critic_var[i])
for i in range(len(self.model.trainable_variables))]
def update(self, critic_var):
[self.model.trainable_variables[i].assign(tf.multiply(critic_var[i], self.tau) \
+ tf.multiply(self.model.trainable_variables[i], 1. - self.tau))
for i in range(len(self.model.trainable_variables))]