-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathscATAC_05_Cluster_Disease_w_Reference_v1.R
446 lines (368 loc) · 15 KB
/
scATAC_05_Cluster_Disease_w_Reference_v1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#Clustering and scATAC-seq UMAP for Hematopoiesis data
#06/02/19
#Cite Granja*, Klemm*, Mcginnis* et al.
#A single cell framework for multi-omic analysis of disease identifies
#malignant regulatory signatures in mixed phenotype acute leukemia (2019)
#Created by Jeffrey Granja
library(Matrix)
library(SummarizedExperiment)
library(tidyverse)
library(uwot)
library(edgeR)
library(FNN)
library(matrixStats)
library(Rcpp)
set.seed(1)
####################################################
#Functions
####################################################
#Binarize Sparse Matrix
binarizeMat <- function(mat){
mat@x[mat@x > 0] <- 1
mat
}
#LSI Adapted from fly-atac with information for re-projection analyses
calcLSI <- function(mat, nComponents = 50, binarize = TRUE, nFeatures = NULL){
set.seed(1)
#TF IDF LSI adapted from flyATAC
if(binarize){
message(paste0("Binarizing matrix..."))
mat@x[mat@x > 0] <- 1
}
if(!is.null(nFeatures)){
message(paste0("Getting top ", nFeatures, " features..."))
idx <- head(order(Matrix::rowSums(mat), decreasing = TRUE), nFeatures)
mat <- mat[idx,]
}else{
idx <- which(Matrix::rowSums(mat) > 0)
mat <- mat[idx,]
}
#Calc RowSums and ColSums
colSm <- Matrix::colSums(mat)
rowSm <- Matrix::rowSums(mat)
#Calc TF IDF
message("Computing Term Frequency IDF...")
freqs <- t(t(mat)/colSm)
idf <- as(log(1 + ncol(mat) / rowSm), "sparseVector")
tfidf <- as(Matrix::Diagonal(x=as.vector(idf)), "sparseMatrix") %*% freqs
#Calc SVD then LSI
message("Computing SVD using irlba...")
svd <- irlba::irlba(tfidf, nComponents, nComponents)
svdDiag <- matrix(0, nrow=nComponents, ncol=nComponents)
diag(svdDiag) <- svd$d
matSVD <- t(svdDiag %*% t(svd$v))
rownames(matSVD) <- colnames(mat)
colnames(matSVD) <- paste0("PC",seq_len(ncol(matSVD)))
#Return Object
out <- list(
matSVD = matSVD,
rowSm = rowSm,
colSm = colSm,
idx = idx,
svd = svd,
binarize = binarize,
nComponents = nComponents,
date = Sys.Date(),
seed = 1)
out
}
projectLSI <- function(mat, lsi){
#Get Same Features
mat <- mat[lsi$idx,]
if(lsi$binarize){
message(paste0("Binarizing matrix..."))
mat@x[mat@x > 0] <- 1
}
#Calc TF IDF
rowsToZero <- which(lsi$rowSm == 0)
setToZero <- which((mat@i + 1) %in% rowsToZero)
if(length(setToZero) > 0){
mat@x[setToZero] <- 0
}
message("Computing Term Frequency IDF...")
freqs <- t(t(mat)/Matrix::colSums(mat))
idf <- as(log(1 + length(lsi$colSm) / lsi$rowSm), "sparseVector")
tfidf <- as(Matrix::Diagonal(x=as.vector(idf)), "sparseMatrix") %*% freqs
if(length(Matrix::which(is.na(tfidf),arr.ind=TRUE)) > 0){
tfidf[Matrix::which(is.na(tfidf),arr.ind=TRUE)] <- 0 #weird Inf * 0
}
#Calc V
V <- t(tfidf) %*% lsi$svd$u %*% diag(1/lsi$svd$d)
#Calc SVD then LSI
message("Computing SVD using irlba...")
svdDiag <- matrix(0, nrow=lsi$nComponents, ncol=lsi$nComponents)
diag(svdDiag) <- lsi$svd$d
matSVD <- t(svdDiag %*% t(V))
rownames(matSVD) <- colnames(mat)
colnames(matSVD) <- paste0("PC",seq_len(ncol(matSVD)))
return(matSVD)
}
#Sparse Variances Rcpp
sourceCpp(code='
#include <Rcpp.h>
using namespace Rcpp;
using namespace std;
// [[Rcpp::export]]
Rcpp::NumericVector computeSparseRowVariances(IntegerVector j, NumericVector val, NumericVector rm, int n) {
const int nv = j.size();
const int nm = rm.size();
Rcpp::NumericVector rv(nm);
Rcpp::NumericVector rit(nm);
int current;
// Calculate RowVars Initial
for (int i = 0; i < nv; ++i) {
current = j(i) - 1;
rv(current) = rv(current) + (val(i) - rm(current)) * (val(i) - rm(current));
rit(current) = rit(current) + 1;
}
// Calculate Remainder Variance
for (int i = 0; i < nm; ++i) {
rv(i) = rv(i) + (n - rit(i))*rm(i)*rm(i);
}
rv = rv / (n - 1);
return(rv);
}'
)
#Compute Fast Sparse Row Variances
sparseRowVariances <- function (m){
rM <- Matrix::rowMeans(m)
rV <- computeSparseRowVariances(m@i + 1, m@x, rM, ncol(m))
return(rV)
}
#Helper function for summing sparse matrix groups
groupSums <- function (mat, groups = NULL, na.rm = TRUE, sparse = FALSE){
stopifnot(!is.null(groups))
stopifnot(length(groups) == ncol(mat))
gm <- lapply(unique(groups), function(x) {
if (sparse) {
Matrix::rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}
else {
rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}
}) %>% Reduce("cbind", .)
colnames(gm) <- unique(groups)
return(gm)
}
#Seurat SNN
seuratSNN <- function(matSVD, dims.use = 1:50, print.output = TRUE, ...){
set.seed(1)
message("Making Seurat Object...")
mat <- matrix(rnorm(nrow(matSVD) * 3, 1000), ncol = nrow(matSVD), nrow = 3)
colnames(mat) <- rownames(matSVD)
obj <- Seurat::CreateSeuratObject(mat, project='scATAC', min.cells=0, min.genes=0)
obj <- Seurat::SetDimReduction(object = obj, reduction.type = "pca", slot = "cell.embeddings", new.data = matSVD)
obj <- Seurat::SetDimReduction(object = obj, reduction.type = "pca", slot = "key", new.data = "PC")
obj <- Seurat::FindClusters(object = obj, reduction.type = "pca", dims.use = dims.use, print.output = print.output, ...)
clust <- [email protected][,ncol([email protected])]
paste0("Cluster",match(clust, unique(clust)))
}
sparseMatTTest <- function(mat1, mat2, m0 = 0){
#Get Population Values
n1 <- ncol(mat1)
n2 <- ncol(mat2)
n <- n1 + n2
#Sparse Row Means
m1 <- Matrix::rowMeans(mat1, na.rm=TRUE)
m2 <- Matrix::rowMeans(mat2, na.rm=TRUE)
#Sparse Row Variances
v1 <- ArchRx:::computeSparseRowVariances(mat1@i + 1, mat1@x, m1, n1)
v2 <- ArchRx:::computeSparseRowVariances(mat2@i + 1, mat2@x, m2, n2)
#Calculate T Statistic
se <- sqrt( (1/n1 + 1/n2) * ((n1-1)*v1 + (n2-1)*v2)/(n1+n2-2) )
tstat <- (m1-m2-m0)/se
#tstat <- sqrt((n1 * n2) / n) / sqrt((n1-1)/(n-2)*v1 + (n2-1)/(n-2)*v2)
pvalue <- 2*pt(-abs(tstat), n - 2)
fdr <- p.adjust(pvalue, method = "fdr")
out <- data.frame(fdr = fdr, pval = pvalue, tstat = tstat, mean1 = m1, mean2 = m2, var1 = v1, var2 = v2, n1 = n1, n2 = n2)
return(out)
}
####################################################
#Input Data
####################################################
#Read in Summarized Experiment
#Please Note Code here has been modified to work with finalized summarized experiment
#Reference Summarized Experiment
#Contains Peaks for Reference Hematopoiesis only
seReference <- readRDS("data/Supplementary_Data_Hematopoiesis/scATAC-Healthy-Hematopoiesis-190429.rds")
#seReference <- seReference[,sample(1:ncol(seReference),5000)] subset data to test since its faster
#SE Disease Cells
id <- "MPAL1"
seDisease <- readRDS("../analysis/2019/Re-Analysis/Projections/ATAC/scATAC/output/Disease/MPAL1_R1/MPAL1_R1.se.rds")
rownames(seDisease) <- paste0(seqnames(seDisease),"_",start(seDisease),"_",end(seDisease))
#Set Clustering Parameters
nPCs1 <- 1:25
nPCs2 <- 1:25
resolution <- 0.8 #clustering resolution
nTop <- 25000 #number of variable peaks
#Create Matrix
mat <- cbind(assay(seReference), assay(seDisease))
#Run LSI 1st Iteration
lsi1 <- calcLSI(mat, nComponents = 50, binarize = TRUE, nFeatures = NULL)
clust1 <- seuratSNN(lsi1[[1]], dims.use = nPCs1, resolution = resolution)
#Make Pseudo Bulk Library
message("Making PseudoBulk...")
mat <- mat[,rownames(lsi1[[1]]), drop = FALSE] #sometimes cells are filtered
mat@x[mat@x > 0] <- 1 #binarize
clusterSums <- groupSums(mat = mat, groups = clust1, sparse = TRUE) #Group Sums
logMat <- edgeR::cpm(clusterSums, log = TRUE, prior.count = 3) #log CPM matrix
varPeaks <- head(order(matrixStats::rowVars(logMat), decreasing = TRUE), nTop) #Top variable peaks
#Run LSI 2nd Iteration
lsi2 <- calcLSI(mat[varPeaks,,drop=FALSE], nComponents = 50, binarize = TRUE, nFeatures = NULL)
clust2 <- seuratSNN(lsi2[[1]], dims.use = nPCs2, resolution = resolution)
#UMAP
set.seed(1)
umap <- uwot::umap(
lsi2$matSVD[,1:25],
n_neighbors = 55,
min_dist = 0.45,
metric = "euclidean",
n_threads = 5,
verbose = TRUE,
ret_model = FALSE
)
#Plot Info
cells <- c(
rep("reference", sum(rownames(lsi2$matSVD) %in% colnames(seReference))),
rep("disease",sum(rownames(lsi2$matSVD) %in% colnames(seDisease)))
)
splitCells <- split(cells,clust2)
df <- data.frame(
clusters = names(splitCells),
proportion = unlist(lapply(seq_along(splitCells), function(x) sum(splitCells[[x]]=="disease") / length(splitCells[[x]])))
)
#Plot UMAP Data Frame
plotDF <- data.frame(umap)
rownames(plotDF) <- c(colnames(seReference), colnames(seDisease))
plotDF$type <- cells
plotDF$clusters <- clust2
plotDF$classification <- 0
#If disease cells are clustered with healthy cluster (proportion > 0.9) we will classify these as healthy-like
plotDF$classification[plotDF$type == "disease" & plotDF$clusters %in% paste0(df$clusters[df[,2] > 0.9])] <- 1
plotDF$classification[plotDF$type == "disease"] <- plotDF$classification[plotDF$type == "disease"] + 1
plotDF <- plotDF[order(plotDF$classification), ]
#Formal Classification
plotDF$classificationSTR <- "reference"
plotDF$classificationSTR[plotDF$classification==1] <- "healthy-like"
plotDF$classificationSTR[plotDF$classification==2] <- "disease-like"
#Plot PDFs
plotDir <- paste0("results/scATAC/classification/")
dir.create(plotDir,recursive=TRUE)
pdf(paste0(plotDir,id,"-Classification-UMAP.pdf"), width = 12, height = 12, useDingbats = FALSE)
ggplot(plotDF, aes(X1,X2,color=classificationSTR)) +
geom_point() +
theme_bw() +
xlab("UMAP Dimension 1") +
ylab("UMAP Dimension 2") +
scale_color_manual(values=c("reference"="lightgrey","healthy-like"="dodgerblue3","disease-like"="firebrick3"))
dev.off()
####################################################
#Project Into LSI UMAP
####################################################
#Previous Reference Summarized Experiment
#Contains Peaks for Reference Hematopoiesis only
se <- readRDS("data/Supplementary_Data_Hematopoiesis/scATAC-Healthy-Hematopoiesis-190429.rds")
#Load Saved UMAP Manifold
umapManifold <- uwot::load_uwot("data/Supplementary_Data_LSI_Projection/scATAC-Hematopoiesis-UMAP-model.190505.uwot.tar")
#LSI Projection Matrix
lsiPeaks <- metadata(se)$variablePeaks
matProjectLSI <- assay(seDisease[lsiPeaks,])
#LSI Project
lsiReference <- metadata(se)$LSI
lsiProjection <- projectLSI(matProjectLSI, lsiReference)
#UMAP Projection
#Set Seed Prior to umap_transform (see uwot github)
set.seed(1)
umapProjection <- uwot::umap_transform(as.matrix(lsiProjection$matSVD)[,1:50], umapManifold, verbose = TRUE)
#Plot Projection
refDF <- data.frame(row.names = colnames(se), X1 = umapManifold$embedding[,1], X2 = umapManifold$embedding[,2], Type = "reference")
proDF <- data.frame(row.names = colnames(seDisease), X1 = umapProjection[,1], X2 = umapProjection[,2], Type = plotDF[colnames(seDisease),]$classificationSTR)
projectionDF <- rbind(refDF, proDF)
plotDir <- paste0("results/scATAC/classification/")
dir.create(plotDir,recursive=TRUE)
pdf(paste0(plotDir,id,"-Projection-UMAP.pdf"), width = 12, height = 12, useDingbats = FALSE)
ggplot(projectionDF, aes(X1,X2,color=Type)) +
geom_point() +
theme_bw() +
xlab("UMAP Dimension 1") +
ylab("UMAP Dimension 2") +
scale_color_manual(values=c("reference"="lightgrey","healthy-like"="dodgerblue3","disease-like"="firebrick3"))
dev.off()
####################################################
#Differential Analysis Into LSI UMAP
####################################################
#Previous MPAL and Reference Summarized Experiment
#Contains Peaks for MPALs and Reference Cell Union Set
se <- readRDS("data/Supplementary_Data_All_Hematopoiesis_MPAL/scATAC-All-Hematopoiesis-MPAL-190429.rds")
#Identify Promoter Overlapping Peaks +/- TSS 500 Bp
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
tsshg19 <- TxDb.Hsapiens.UCSC.hg19.knownGene %>% transcripts %>% resize(1,"start") %>% unique
strand(tsshg19) <- "*"
promoterPeaks <- subjectHits(findOverlaps(resize(tsshg19, 500 * 2 + 1), rowRanges(se), ignore.strand=TRUE))
#Input Parameters
input_knn <- 25
scaleTo <- 10000
nMax <- 500
#LSI-SVD
svdReference <- as.data.frame(lsiReference$matSVD)
svdDisease <- as.data.frame(as.matrix(lsiProjection$matSVD))
#Differential Seed
set.seed(1)
#Cells that we are testing of disease
idxDisease <- rownames(plotDF)[plotDF$classificationSTR=="disease-like"]
#If the number of cells exceeds the max downsample to max
if(length(idxDisease) > nMax){
idxDisease <- sample(idxDisease, nMax)
}
#If the number of cells is greater than 5 continue
stopifnot(length(idxDisease) > 5)
#KNN Nearest Neighbor using FNN
knnDisease <- get.knnx(
data = svdReference,
query = svdDisease[idxDisease, ], #Subset by idxDisease
k = input_knn)
#Determine the minimum KNN where reference cells are less than 1.25x disease cells
i <- 0
uniqueIdx <- unique(as.vector(knnDisease$nn.index))
while(length(uniqueIdx) > 1.25 * length(idxDisease)){
i <- i + 1
uniqueIdx <- unique(as.vector(knnDisease$nn.index[,seq_len(input_knn-i)]))
}
#Reference cells for testing
idxReference <- rownames(svdReference)[uniqueIdx]
#If there are more healthy cells downsample healthy cells
#If there are more disease cells downasmple disease cells
if(length(idxReference) > length(idxDisease)){
idxReference <- sample(idxReference, length(idxDisease))
}else{
idxDisease <- sample(idxDisease, length(idxReference))
}
message(sprintf("nDisease = %s\nnHealthy = %s", length(idxDisease), length(idxReference)))
#Disease and Reference Matrix
matHealthy <- assay(se[,idxReference])
matDisease <- assay(se[,idxDisease])
#Normalize to scaleTo
matNormDisease <- t(t(matDisease)/Matrix::colSums(matDisease[promoterPeaks,])) * 5000
matNormHealthy <- t(t(matHealthy)/Matrix::colSums(matHealthy[promoterPeaks,])) * 5000
#T-Test Comparisons
dfTT <- sparseMatTTest(matNormDisease, matNormHealthy)
dfTT$feature <- rownames(matNormDisease)
dfTT$log2Mean <- log2(rowMeans(cbind(dfTT$mean1, dfTT$mean2)) + 10^-4)
dfTT$log2FC <- log2((dfTT$mean1 + 10^-4)/(dfTT$mean2 + 10^-4))
plotDiff <- data.frame(row.names=row.names(dfTT),log2Mean=dfTT$log2Mean,log2FC=dfTT$log2FC,FDR=dfTT$fdr)
plotDiff <- plotDiff[complete.cases(plotDiff),]
plotDiff$type <- "not-differential"
plotDiff$type[plotDiff$log2FC >= 0.5 & plotDiff$FDR <= 0.05] <- "up-regulated"
plotDiff$type[plotDiff$log2FC <= -0.5 & plotDiff$FDR <= 0.05] <- "do-regulated"
plotDir <- paste0("results/scATAC/classification/")
dir.create(plotDir,recursive=TRUE)
pdf(paste0(plotDir,id,"-Differential-MA-Plot.pdf"), width = 8, height = 6, useDingbats = FALSE)
ggplot(plotDiff, aes(log2Mean,log2FC,color=type)) +
ggrastr::geom_point_rast(size=0.5) +
theme_bw() +
xlab("log2 Mean") +
ylab("log2 Fold Change") +
scale_color_manual(values=c("not-differential"="lightgrey", "do-regulated"="dodgerblue3", "up-regulated"="firebrick3"))
dev.off()
#Save Output
readr::write_tsv(dfTT, paste0(plotDir,id,"-Differential-Results.tsv"))