forked from jeya-maria-jose/KiU-Net-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
280 lines (220 loc) · 9.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import numpy as np
import torch
from skimage import io,color
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms as T
from torchvision.transforms import functional as F
from typing import Callable
import os
import cv2
import pandas as pd
from numbers import Number
from typing import Container
from collections import defaultdict
def to_long_tensor(pic):
# handle numpy array
img = torch.from_numpy(np.array(pic, np.uint8))
# backward compatibility
return img.long()
def correct_dims(*images):
corr_images = []
# print(images)
for img in images:
if len(img.shape) == 2:
corr_images.append(np.expand_dims(img, axis=2))
else:
corr_images.append(img)
if len(corr_images) == 1:
return corr_images[0]
else:
return corr_images
class JointTransform2D:
"""
Performs augmentation on image and mask when called. Due to the randomness of augmentation transforms,
it is not enough to simply apply the same Transform from torchvision on the image and mask separetely.
Doing this will result in messing up the ground truth mask. To circumvent this problem, this class can
be used, which will take care of the problems above.
Args:
crop: tuple describing the size of the random crop. If bool(crop) evaluates to False, no crop will
be taken.
p_flip: float, the probability of performing a random horizontal flip.
color_jitter_params: tuple describing the parameters of torchvision.transforms.ColorJitter.
If bool(color_jitter_params) evaluates to false, no color jitter transformation will be used.
p_random_affine: float, the probability of performing a random affine transform using
torchvision.transforms.RandomAffine.
long_mask: bool, if True, returns the mask as LongTensor in label-encoded format.
"""
def __init__(self, crop=(32, 32), p_flip=0.5, color_jitter_params=(0.1, 0.1, 0.1, 0.1),
p_random_affine=0, long_mask=False):
self.crop = crop
self.p_flip = p_flip
self.color_jitter_params = color_jitter_params
if color_jitter_params:
self.color_tf = T.ColorJitter(*color_jitter_params)
self.p_random_affine = p_random_affine
self.long_mask = long_mask
def __call__(self, image, mask):
# transforming to PIL image
image, mask = F.to_pil_image(image), F.to_pil_image(mask)
# random crop
if self.crop:
i, j, h, w = T.RandomCrop.get_params(image, self.crop)
image, mask = F.crop(image, i, j, h, w), F.crop(mask, i, j, h, w)
if np.random.rand() < self.p_flip:
image, mask = F.hflip(image), F.hflip(mask)
# color transforms || ONLY ON IMAGE
if self.color_jitter_params:
image = self.color_tf(image)
# random affine transform
if np.random.rand() < self.p_random_affine:
affine_params = T.RandomAffine(180).get_params((-90, 90), (1, 1), (2, 2), (-45, 45), self.crop)
image, mask = F.affine(image, *affine_params), F.affine(mask, *affine_params)
# transforming to tensor
image = F.to_tensor(image)
if not self.long_mask:
mask = F.to_tensor(mask)
else:
mask = to_long_tensor(mask)
return image, mask
class ImageToImage2D(Dataset):
"""
Reads the images and applies the augmentation transform on them.
Usage:
1. If used without the unet.model.Model wrapper, an instance of this object should be passed to
torch.utils.data.DataLoader. Iterating through this returns the tuple of image, mask and image
filename.
2. With unet.model.Model wrapper, an instance of this object should be passed as train or validation
datasets.
Args:
dataset_path: path to the dataset. Structure of the dataset should be:
dataset_path
|-- images
|-- img001.png
|-- img002.png
|-- ...
|-- masks
|-- img001.png
|-- img002.png
|-- ...
joint_transform: augmentation transform, an instance of JointTransform2D. If bool(joint_transform)
evaluates to False, torchvision.transforms.ToTensor will be used on both image and mask.
one_hot_mask: bool, if True, returns the mask in one-hot encoded form.
"""
def __init__(self, dataset_path: str, joint_transform: Callable = None, one_hot_mask: int = False) -> None:
self.dataset_path = dataset_path
self.input_path = os.path.join(dataset_path, 'img')
self.output_path = os.path.join(dataset_path, 'label')
self.images_list = os.listdir(self.input_path)
self.one_hot_mask = one_hot_mask
if joint_transform:
self.joint_transform = joint_transform
else:
to_tensor = T.ToTensor()
self.joint_transform = lambda x, y: (to_tensor(x), to_tensor(y))
def __len__(self):
return len(os.listdir(self.input_path))
def __getitem__(self, idx):
image_filename = self.images_list[idx]
#print(image_filename[: -3])
# read image
# print(os.path.join(self.input_path, image_filename))
# print(os.path.join(self.output_path, image_filename[: -3] + "png"))
# print(os.path.join(self.input_path, image_filename))
image = cv2.imread(os.path.join(self.input_path, image_filename))
# print(image.shape)
# read mask image
mask = cv2.imread(os.path.join(self.output_path, image_filename[: -3] + "png"),0)
# correct dimensions if needed
image, mask = correct_dims(image, mask)
# print(image.shape)
if self.joint_transform:
image, mask = self.joint_transform(image, mask)
if self.one_hot_mask:
assert self.one_hot_mask > 0, 'one_hot_mask must be nonnegative'
mask = torch.zeros((self.one_hot_mask, mask.shape[1], mask.shape[2])).scatter_(0, mask.long(), 1)
# mask = np.swapaxes(mask,2,0)
# print(image.shape)
# print(mask.shape)
# mask = np.transpose(mask,(2,0,1))
# image = np.transpose(image,(2,0,1))
# print(image.shape)
# print(mask.shape)
return image, mask, image_filename
class Image2D(Dataset):
"""
Reads the images and applies the augmentation transform on them. As opposed to ImageToImage2D, this
reads a single image and requires a simple augmentation transform.
Usage:
1. If used without the unet.model.Model wrapper, an instance of this object should be passed to
torch.utils.data.DataLoader. Iterating through this returns the tuple of image and image
filename.
2. With unet.model.Model wrapper, an instance of this object should be passed as a prediction
dataset.
Args:
dataset_path: path to the dataset. Structure of the dataset should be:
dataset_path
|-- images
|-- img001.png
|-- img002.png
|-- ...
transform: augmentation transform. If bool(joint_transform) evaluates to False,
torchvision.transforms.ToTensor will be used.
"""
def __init__(self, dataset_path: str, transform: Callable = None):
self.dataset_path = dataset_path
self.input_path = os.path.join(dataset_path, 'img')
self.images_list = os.listdir(self.input_path)
if transform:
self.transform = transform
else:
self.transform = T.ToTensor()
def __len__(self):
return len(os.listdir(self.input_path))
def __getitem__(self, idx):
image_filename = self.images_list[idx]
image = cv2.imread(os.path.join(self.input_path, image_filename),0)
# image = np.transpose(image,(2,0,1))
image = correct_dims(image)
image = self.transform(image)
# image = np.swapaxes(image,2,0)
return image, image_filename
def chk_mkdir(*paths: Container) -> None:
"""
Creates folders if they do not exist.
Args:
paths: Container of paths to be created.
"""
for path in paths:
if not os.path.exists(path):
os.makedirs(path)
class Logger:
def __init__(self, verbose=False):
self.logs = defaultdict(list)
self.verbose = verbose
def log(self, logs):
for key, value in logs.items():
self.logs[key].append(value)
if self.verbose:
print(logs)
def get_logs(self):
return self.logs
def to_csv(self, path):
pd.DataFrame(self.logs).to_csv(path, index=None)
class MetricList:
def __init__(self, metrics):
assert isinstance(metrics, dict), '\'metrics\' must be a dictionary of callables'
self.metrics = metrics
self.results = {key: 0.0 for key in self.metrics.keys()}
def __call__(self, y_out, y_batch):
for key, value in self.metrics.items():
self.results[key] += value(y_out, y_batch)
def reset(self):
self.results = {key: 0.0 for key in self.metrics.keys()}
def get_results(self, normalize=False):
assert isinstance(normalize, bool) or isinstance(normalize, Number), '\'normalize\' must be boolean or a number'
if not normalize:
return self.results
else:
return {key: value/normalize for key, value in self.results.items()}