-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2014CS10220.cpp
296 lines (262 loc) · 9.26 KB
/
2014CS10220.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include <bits/stdc++.h>
#include "nanoflann.hpp"
#include "KDTreeVectorOfVectorsAdaptor.h"
using namespace std;
#define endl "\n"
// const int eps_for_precision = 1e-7; // for comparing with floats/double
const double eps_for_precision = 1e-10; // for comparing with floats/double
const double undefined = 1e9;
vector< vector<double> > points;
vector<double> reachabilityDistance;
vector<bool> isProcessed;
vector<int> orderedList;
double epsilon;
int minPts;
int numPts;
int dims;
vector<string> split(string const &input) {
istringstream buffer(input);
vector<string> ret((istream_iterator<string>(buffer)), istream_iterator<string>());
return ret;
}
void readFile(string filename = "data.tsv"){
// probably a faster way of reading from a file
/*
std::vector<char> v;
if (FILE *fp = fopen("filename", "r"))
{
char buf[1024];
while (size_t len = fread(buf, 1, sizeof(buf), fp))
v.insert(v.end(), buf, buf + len);
fclose(fp);
}
*/
ifstream input;
input.open(filename);
string pointLine;
vector<string> splittedLine;
// vector<int> point;
numPts = 0;
// dims;
while(getline(input, pointLine)) {
// point.clear();
vector<double> point;
splittedLine = split(pointLine);
for (string coord : splittedLine){
double point_coord = stod(coord);
point.push_back(point_coord);
}
if (numPts == 0) dims = point.size();
points.push_back(point);
reachabilityDistance.push_back(undefined);
isProcessed.push_back(0);
numPts++;
}
cout << "read " << numPts << " points, each of dimension " << dims << endl;
}
double getSquaredDistance(int pointId1, int pointId2){
double squaredDistance = 0;
for (int i = 0; i < dims; ++i){
double diff = (points[pointId1][i] - points[pointId2][i]);
squaredDistance += diff*diff;
}
return squaredDistance;
}
// returns the ids of the points which are in neighborhood of the point whose id is pointId
vector< pair<double, int> > getNeighbors(int pointId){
double squaredEpsilon = epsilon*epsilon;
vector< pair<double, int> > neighbors;
for (int i = 0; i < numPts; ++i){
if (i != pointId){
double squaredDistance = getSquaredDistance(pointId, i);
// if (squaredDistance <= epsilon){
if (squaredDistance <= squaredEpsilon){
neighbors.push_back({sqrt(squaredDistance), i});
}
}
}
sort(neighbors.begin(), neighbors.end());
return neighbors;
}
bool equality_for_floats(double d1, double d2){
return ((d1 > d2 - eps_for_precision) && (d1 < d2 + eps_for_precision));
}
void updateSeeds(vector< pair<double, int> >& neighbors, int p, set< pair<double, int> >& seeds){
double coreDistance = neighbors[minPts - 2].first;
for (pair<double, int> p1 : neighbors){
double distance = p1.first;
int o = p1.second;
if (!isProcessed[o]){
double newReachDist = max(coreDistance, distance);
// if (equality_for_floats(reachabilityDistance[o], undefined)){ // o is not in seeds; reachabilityDistance[o] is undefined
if (reachabilityDistance[o] > undefined - 1){
reachabilityDistance[o] = newReachDist;
seeds.insert({newReachDist, o});
}
else{ // o in seeds, check for improvement
if (newReachDist < reachabilityDistance[o] - eps_for_precision){
// seeds.erase({reachabilityDistance[o], o});
// set< pair<double, int> >::iterator it1 = seeds.lower_bound({(reachabilityDistance[0] - eps_for_precision), o});
// set< pair<double, int> >::iterator it1 = seeds.lower_bound({(reachabilityDistance[o] - eps_for_precision), o});
// set< pair<double, int> >::iterator it1 = seeds.lower_bound({(reachabilityDistance[o]), o});
set< pair<double, int> >::iterator it1 = seeds.find({(reachabilityDistance[o]), o});
if (it1 != seeds.end() ) seeds.erase(it1);
else {
cout << "not found----" << endl;
for (auto p1 : seeds) cout << p1.first << ", " << p1.second << ";" << endl;
cout << "reachabilityDistance[o] : " << reachabilityDistance[o] << " ,o: " << o << ", " << (reachabilityDistance[o] - eps_for_precision)
<< ", newReachDist: " << newReachDist << endl;
}
// reachabilityDistance[0] = newReachDist;
reachabilityDistance[o] = newReachDist;
seeds.insert({newReachDist, o});
}
}
}
}
}
void optics(){
// int p = 0;
// for each unprocessed point p:
for (int p = 0; p < numPts; ++p){
if (!isProcessed[p]){
vector< pair<double, int> > neighbors = getNeighbors(p);
isProcessed[p] = 1;
orderedList.push_back(p);
if (neighbors.size() + 1 >= minPts){ // if p is a core point
// double coreDistance = neighbors[minPts - 2];
set< pair<double, int> > seeds;
updateSeeds(neighbors, p, seeds);
while(!seeds.empty()){
int q = (seeds.begin())->second;
seeds.erase(seeds.begin());
vector< pair<double, int> > neighbors_q = getNeighbors(q);
if (isProcessed[q]) cout << "gadbad : q : " << q << endl;
isProcessed[q] = 1;
orderedList.push_back(q);
if (neighbors_q.size() + 1 >= minPts){ // if q is a core point
updateSeeds(neighbors_q, q, seeds);
}
}
}
cout << "Ordered list size : " << orderedList.size() << endl;
}
}
}
void updateSeeds2(vector< pair<size_t, double> >& neighbors, int p, set< pair<double, int> >& seeds, double coreDistance){
// double coreDistance = neighbors[minPts - 2].first;
for (pair<int, double> p1 : neighbors){
int o = p1.first;
double distance = sqrt(p1.second);
if (!isProcessed[o]){
double newReachDist = max(coreDistance, distance);
if (reachabilityDistance[o] > undefined - 1){
reachabilityDistance[o] = newReachDist;
seeds.insert({newReachDist, o});
}
else{ // o in seeds, check for improvement
if (newReachDist < reachabilityDistance[o] - eps_for_precision){
set< pair<double, int> >::iterator it1 = seeds.find({(reachabilityDistance[o]), o});
if (it1 != seeds.end() ) seeds.erase(it1);
else cout << "not found----" << endl;
reachabilityDistance[o] = newReachDist;
seeds.insert({newReachDist, o});
}
}
}
}
}
void optics2(){
KDTreeVectorOfVectorsAdaptor< vector< vector<double> >, double > mat_index(dims, points, 10);
mat_index.index->buildIndex();
for (int p = 0; p < numPts; ++p){
if (!isProcessed[p]){
vector< pair<double, int> > neighbors = getNeighbors(p);
isProcessed[p] = 1;
orderedList.push_back(p);
//
vector<double> pointQueryP(dims);
for (size_t i = 0; i < dims; ++i)
pointQueryP[i] = points[p][i];
const size_t num_results = minPts;
vector<size_t> ret_indexes(num_results);
vector<double> squaredDistFromP(num_results);
nanoflann::KNNResultSet<double> resultSet(num_results);
resultSet.init(&ret_indexes[0], &squaredDistFromP[0]);
mat_index.index->findNeighbors(resultSet, &pointQueryP[0], nanoflann::SearchParams(10));
//
double coredist = sqrt(squaredDistFromP[num_results-1]);
double squaredEpsilon = epsilon*epsilon;
if (coredist < epsilon) {
// if (neighbors.size() + 1 >= minPts){ // if p is a core point
// double coreDistance = neighbors[minPts - 2];
set< pair<double, int> > seeds;
// radius search
const double search_radius = squaredEpsilon;
vector<pair<size_t,double> > ret_matches;
nanoflann::SearchParams params;
const size_t nMatches = mat_index.index->radiusSearch(&pointQueryP[0], search_radius, ret_matches, params);
updateSeeds2(ret_matches, p, seeds, coredist);
while(!seeds.empty()){
int q = (seeds.begin())->second;
seeds.erase(seeds.begin());
if (isProcessed[q]) cout << "gadbad : q : " << q << endl;
isProcessed[q] = 1;
orderedList.push_back(q);
//
vector<double> pointQueryQ(dims);
for (size_t i = 0; i < dims; ++i)
pointQueryQ[i] = points[q][i];
// do a knn search
vector<size_t> ret_indexes2(num_results);
vector<double> squaredDistFromQ(num_results);
nanoflann::KNNResultSet<double> resultSet2(num_results);
resultSet2.init(&ret_indexes2[0], &squaredDistFromQ[0]);
mat_index.index->findNeighbors(resultSet2, &pointQueryQ[0], nanoflann::SearchParams(10));
//
double coredistq = sqrt(squaredDistFromQ[num_results-1]);
if (coredistq < epsilon) {
// radius search
vector<pair<size_t,double> > ret_matches2;
nanoflann::SearchParams params2;
const size_t nMatches2 = mat_index.index->radiusSearch(&pointQueryQ[0], search_radius, ret_matches2, params2);
// vector< pair<double, int> > neighbors_q = getNeighbors(q);
// if (neighbors_q.size() + 1 >= minPts){ // if q is a core point
updateSeeds2(ret_matches2, q, seeds, coredistq);
// }
}
}
}
cout << "Ordered list size : " << orderedList.size() << endl;
}
}
}
void printReachabilityDist(){
ofstream outf;
outf.open("2014CS10220_reachabilityDist.txt");
for (int pointId : orderedList){
outf << reachabilityDistance[pointId] << "\n";
}
outf.close();
}
int main(int argc, char* argv[]){
cout.precision(11);
if(argc != 3){
cerr << "Enter 2 inputs: <minPts> <epsilon>\n";
return 0;
}
minPts = stoi(argv[1]);
epsilon = stod(argv[2]);
cout << "minPts: " << minPts << ", epsilon: " << epsilon << endl;
readFile();
optics2();
printReachabilityDist();
// cout << "duplicates: "<< endl;
// sort(orderedList.begin(), orderedList.end());
// int len = orderedList.size();
// for(int i = 1; i < orderedList.size(); ++i){
// if (orderedList[i-1] == orderedList[i]) cout << orderedList[i] << ", ";
// }
// cout << endl;
return 0;
}