-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathgnn.py
98 lines (87 loc) · 3.75 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
This module defines a generic trainer for simple models and datasets.
"""
# System
import time
# Externals
import torch
from torch import nn
# Locals
from .base_trainer import BaseTrainer
from models import get_model
class GNNTrainer(BaseTrainer):
"""Trainer code for basic classification problems."""
def __init__(self, real_weight=1, fake_weight=1, **kwargs):
super(GNNTrainer, self).__init__(**kwargs)
self.real_weight = real_weight
self.fake_weight = fake_weight
def build_model(self, name='gnn_segment_classifier',
optimizer='Adam', learning_rate=0.001,
loss_func='binary_cross_entropy', **model_args):
"""Instantiate our model"""
# Construct the model
self.model = get_model(name=name, **model_args).to(self.device)
if self.distributed:
self.model = nn.parallel.DistributedDataParallelCPU(self.model)
# TODO: LR scaling
self.optimizer = getattr(torch.optim, optimizer)(
self.model.parameters(), lr=learning_rate)
# Functional loss functions
self.loss_func = getattr(nn.functional, loss_func)
def train_epoch(self, data_loader):
"""Train for one epoch"""
self.model.train()
summary = dict()
sum_loss = 0
start_time = time.time()
# Loop over training batches
for i, (batch_input, batch_target) in enumerate(data_loader):
batch_input = [a.to(self.device) for a in batch_input]
batch_target = batch_target.to(self.device)
# Compute target weights on-the-fly for loss function
batch_weights_real = batch_target * self.real_weight
batch_weights_fake = (1 - batch_target) * self.fake_weight
batch_weights = batch_weights_real + batch_weights_fake
self.model.zero_grad()
batch_output = self.model(batch_input)
batch_loss = self.loss_func(batch_output, batch_target, weight=batch_weights)
batch_loss.backward()
self.optimizer.step()
sum_loss += batch_loss.item()
self.logger.debug(' batch %i, loss %f', i, batch_loss.item())
summary['train_time'] = time.time() - start_time
summary['train_loss'] = sum_loss / (i + 1)
self.logger.debug(' Processed %i batches' % (i + 1))
self.logger.info(' Training loss: %.3f' % summary['train_loss'])
return summary
@torch.no_grad()
def evaluate(self, data_loader):
""""Evaluate the model"""
self.model.eval()
summary = dict()
sum_loss = 0
sum_correct = 0
sum_total = 0
start_time = time.time()
# Loop over batches
for i, (batch_input, batch_target) in enumerate(data_loader):
self.logger.debug(' batch %i', i)
batch_input = [a.to(self.device) for a in batch_input]
batch_target = batch_target.to(self.device)
batch_output = self.model(batch_input)
sum_loss += self.loss_func(batch_output, batch_target).item()
# Count number of correct predictions
matches = ((batch_output > 0.5) == (batch_target > 0.5))
sum_correct += matches.sum().item()
sum_total += matches.numel()
summary['valid_time'] = time.time() - start_time
summary['valid_loss'] = sum_loss / (i + 1)
summary['valid_acc'] = sum_correct / sum_total
self.logger.debug(' Processed %i samples in %i batches',
len(data_loader.sampler), i + 1)
self.logger.info(' Validation loss: %.3f acc: %.3f' %
(summary['valid_loss'], summary['valid_acc']))
return summary
def _test():
t = GNNTrainer(output_dir='./')
t.build_model()