-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathutils.py
574 lines (468 loc) · 20.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import numpy as np
import pandas as pd
import torch
from sklearn.metrics import roc_auc_score, jaccard_score
import cv2
from torch import nn
import torch.nn.functional as F
import math
from functools import wraps
import warnings
import weakref
from PIL import Image
from numpy import average, dot, linalg
from torch.autograd import Variable
from torch.optim.optimizer import Optimizer
class WeightedBCE(nn.Module):
def __init__(self, weights=[0.4, 0.6]):
super(WeightedBCE, self).__init__()
self.weights = weights
def forward(self, logit_pixel, truth_pixel):
# print("====",logit_pixel.size())
logit = logit_pixel.view(-1)
truth = truth_pixel.view(-1)
assert (logit.shape == truth.shape)
loss = F.binary_cross_entropy(logit, truth, reduction='none')
pos = (truth > 0.5).float()
neg = (truth < 0.5).float()
pos_weight = pos.sum().item() + 1e-12
neg_weight = neg.sum().item() + 1e-12
loss = (self.weights[0] * pos * loss / pos_weight + self.weights[1] * neg * loss / neg_weight).sum()
return loss
class WeightedDiceLoss(nn.Module):
def __init__(self, weights=[0.5, 0.5]): # W_pos=0.8, W_neg=0.2
super(WeightedDiceLoss, self).__init__()
self.weights = weights
def forward(self, logit, truth, smooth=1e-5):
batch_size = len(logit)
logit = logit.view(batch_size, -1)
truth = truth.view(batch_size, -1)
assert (logit.shape == truth.shape)
p = logit.view(batch_size, -1)
t = truth.view(batch_size, -1)
w = truth.detach()
w = w * (self.weights[1] - self.weights[0]) + self.weights[0]
p = w * (p)
t = w * (t)
intersection = (p * t).sum(-1)
union = (p * p).sum(-1) + (t * t).sum(-1)
dice = 1 - (2 * intersection + smooth) / (union + smooth)
loss = dice.mean()
return loss
class BinaryDiceLoss(nn.Module):
def __init__(self):
super(BinaryDiceLoss, self).__init__()
def forward(self, inputs, targets):
N = targets.size()[0]
smooth = 1
input_flat = inputs.view(N, -1)
targets_flat = targets.view(N, -1)
intersection = input_flat + targets_flat
N_dice_eff = (2 * intersection.sum(1) + smooth) / (input_flat.sum(1) + targets_flat.sum(1) + smooth)
loss = 1 - N_dice_eff.sum() / N
return loss
class MultiClassDiceLoss(nn.Module):
def __init__(self, weight=None, ignore_index=None):
super(MultiClassDiceLoss, self).__init__()
self.weight = weight
self.ignore_index = ignore_index
self.dice_loss = WeightedDiceLoss()
def forward(self, inputs, targets):
# print(inputs.shape)
assert inputs.shape == targets.shape, "predict & target shape do not match"
total_loss = 0
# logits = F.softmax(inputs, dim=1)
for i in range(5):
dice_loss = self.dice_loss(inputs[:, i], targets[:, i])
total_loss += dice_loss
total_loss = total_loss / 5
return total_loss
class DiceLoss(nn.Module):
def __init__(self, n_classes):
super(DiceLoss, self).__init__()
self.n_classes = n_classes
def _one_hot_encoder(self, input_tensor):
tensor_list = []
for i in range(self.n_classes):
temp_prob = input_tensor == i * torch.ones_like(input_tensor)
tensor_list.append(temp_prob)
output_tensor = torch.cat(tensor_list, dim=1)
return output_tensor.float()
def _dice_loss(self, score, target):
target = target.float()
smooth = 1e-5
intersect = torch.sum(score * target)
y_sum = torch.sum(target * target)
z_sum = torch.sum(score * score)
loss = (2 * intersect + smooth) / (z_sum + y_sum + smooth)
loss = 1 - loss
return loss
def forward(self, inputs, target, weight=None, softmax=False):
if softmax:
inputs = torch.softmax(inputs, dim=1)
target = self._one_hot_encoder(target)
if weight is None:
weight = [1] * self.n_classes
assert inputs.size() == target.size(), 'predict & target shape do not match'
class_wise_dice = []
loss = 0.0
dice1 = self._dice_loss(inputs[:, 1], target[:, 1]) * weight[1]
dice2 = self._dice_loss(inputs[:, 2], target[:, 2]) * weight[2]
dice3 = self._dice_loss(inputs[:, 3], target[:, 3]) * weight[3]
for i in range(0, self.n_classes):
dice = self._dice_loss(inputs[:, i], target[:, i])
class_wise_dice.append(1.0 - dice.item())
loss += dice * weight[i]
return loss / self.n_classes, dice1, dice2, dice3
class WeightedDiceCE(nn.Module):
def __init__(self, dice_weight=0.5, CE_weight=0.5):
super(WeightedDiceCE, self).__init__()
self.CE_loss = nn.CrossEntropyLoss()
self.dice_loss = DiceLoss(4) # OSIC: 4, RITE: 5
self.CE_weight = CE_weight
self.dice_weight = dice_weight
def _show_dice(self, inputs, targets):
# inputs = inputs.argmax(dim=1)
dice, dice1, dice2, dice3 = self.dice_loss(inputs, targets)
hard_dice_coeff = 1 - dice
dice01 = 1 - dice1
dice02 = 1 - dice2
dice03 = 1 - dice3
torch.cuda.empty_cache()
return hard_dice_coeff, dice01, dice02, dice03
def forward(self, inputs, targets):
targets = targets.long()
dice_CE_loss = self.dice_loss(inputs, targets)
torch.cuda.empty_cache()
return dice_CE_loss
class WeightedDiceBCE_unsup(nn.Module):
def __init__(self, dice_weight=1, BCE_weight=1):
super(WeightedDiceBCE_unsup, self).__init__()
self.BCE_loss = WeightedBCE(weights=[0.5, 0.5])
self.dice_loss = WeightedDiceLoss(weights=[0.5, 0.5])
self.BCE_weight = BCE_weight
self.dice_weight = dice_weight
def _show_dice(self, inputs, targets):
inputs[inputs >= 0.5] = 1
inputs[inputs < 0.5] = 0
targets[targets > 0] = 1
targets[targets <= 0] = 0
hard_dice_coeff = 1.0 - self.dice_loss(inputs, targets)
return hard_dice_coeff
def forward(self, inputs, targets, LV_loss):
dice = self.dice_loss(inputs, targets)
BCE = self.BCE_loss(inputs, targets)
dice_BCE_loss = self.dice_weight * dice + self.BCE_weight * BCE + 0.1 * LV_loss
return dice_BCE_loss
class WeightedDiceBCE(nn.Module):
def __init__(self, dice_weight=1, BCE_weight=1):
super(WeightedDiceBCE, self).__init__()
self.BCE_loss = WeightedBCE(weights=[0.5, 0.5])
self.dice_loss = WeightedDiceLoss(weights=[0.5, 0.5])
self.BCE_weight = BCE_weight
self.dice_weight = dice_weight
def _show_dice(self, inputs, targets):
inputs[inputs >= 0.5] = 1
inputs[inputs < 0.5] = 0
targets[targets > 0] = 1
targets[targets <= 0] = 0
hard_dice_coeff = 1.0 - self.dice_loss(inputs, targets)
return hard_dice_coeff
def forward(self, inputs, targets):
dice = self.dice_loss(inputs, targets)
BCE = self.BCE_loss(inputs, targets)
dice_BCE_loss = self.dice_weight * dice + self.BCE_weight * BCE
return dice_BCE_loss
def auc_on_batch(masks, pred):
'''Computes the mean Area Under ROC Curve over a batch during training'''
aucs = []
for i in range(pred.shape[1]):
prediction = pred[i][0].cpu().detach().numpy()
# print("www",np.max(prediction), np.min(prediction))
mask = masks[i].cpu().detach().numpy()
# print("rrr",np.max(mask), np.min(mask))
aucs.append(roc_auc_score(mask.reshape(-1), prediction.reshape(-1)))
return np.mean(aucs)
def iou_on_batch(masks, pred):
'''Computes the mean Area Under ROC Curve over a batch during training'''
ious = []
for i in range(pred.shape[0]):
pred_tmp = pred[i][0].cpu().detach().numpy()
mask_tmp = masks[i].cpu().detach().numpy()
pred_tmp[pred_tmp >= 0.5] = 1
pred_tmp[pred_tmp < 0.5] = 0
mask_tmp[mask_tmp > 0] = 1
mask_tmp[mask_tmp <= 0] = 0
ious.append(jaccard_score(mask_tmp.reshape(-1), pred_tmp.reshape(-1)))
return np.mean(ious)
def dice_coef(y_true, y_pred):
smooth = 1e-5
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
def dice_on_batch(masks, pred):
'''Computes the mean Area Under ROC Curve over a batch during training'''
dices = []
for i in range(pred.shape[0]):
pred_tmp = pred[i][0].cpu().detach().numpy()
mask_tmp = masks[i].cpu().detach().numpy()
pred_tmp[pred_tmp >= 0.5] = 1
pred_tmp[pred_tmp < 0.5] = 0
mask_tmp[mask_tmp > 0] = 1
mask_tmp[mask_tmp <= 0] = 0
dices.append(dice_coef(mask_tmp, pred_tmp))
return np.mean(dices)
def save_on_batch(images1, masks, pred, names, vis_path):
'''Computes the mean Area Under ROC Curve over a batch during training'''
for i in range(pred.shape[0]):
pred_tmp = pred[i][0].cpu().detach().numpy()
mask_tmp = masks[i].cpu().detach().numpy()
pred_tmp[pred_tmp >= 0.5] = 255
pred_tmp[pred_tmp < 0.5] = 0
mask_tmp[mask_tmp > 0] = 255
mask_tmp[mask_tmp <= 0] = 0
cv2.imwrite(vis_path + names[i][:-4] + "_pred.jpg", pred_tmp)
cv2.imwrite(vis_path + names[i][:-4] + "_gt.jpg", mask_tmp)
class _LRScheduler(object):
def __init__(self, optimizer, last_epoch=-1):
# Attach optimizer
if not isinstance(optimizer, Optimizer):
raise TypeError('{} is not an Optimizer'.format(
type(optimizer).__name__))
self.optimizer = optimizer
# Initialize epoch and base learning rates
if last_epoch == -1:
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
else:
for i, group in enumerate(optimizer.param_groups):
if 'initial_lr' not in group:
raise KeyError("param 'initial_lr' is not specified "
"in param_groups[{}] when resuming an optimizer".format(i))
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
self.last_epoch = last_epoch
# Following https://github.com/pytorch/pytorch/issues/20124
# We would like to ensure that `lr_scheduler.step()` is called after
# `optimizer.step()`
def with_counter(method):
if getattr(method, '_with_counter', False):
# `optimizer.step()` has already been replaced, return.
return method
# Keep a weak reference to the optimizer instance to prevent
# cyclic references.
instance_ref = weakref.ref(method.__self__)
# Get the unbound method for the same purpose.
func = method.__func__
cls = instance_ref().__class__
del method
@wraps(func)
def wrapper(*args, **kwargs):
instance = instance_ref()
instance._step_count += 1
wrapped = func.__get__(instance, cls)
return wrapped(*args, **kwargs)
# Note that the returned function here is no longer a bound method,
# so attributes like `__func__` and `__self__` no longer exist.
wrapper._with_counter = True
return wrapper
self.optimizer.step = with_counter(self.optimizer.step)
self.optimizer._step_count = 0
self._step_count = 0
self.step()
def state_dict(self):
"""Returns the state of the scheduler as a :class:`dict`.
It contains an entry for every variable in self.__dict__ which
is not the optimizer.
"""
return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}
def load_state_dict(self, state_dict):
"""Loads the schedulers state.
Arguments:
state_dict (dict): scheduler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
def get_last_lr(self):
""" Return last computed learning rate by current scheduler.
"""
return self._last_lr
def get_lr(self):
# Compute learning rate using chainable form of the scheduler
raise NotImplementedError
def step(self, epoch=None):
# Raise a warning if old pattern is detected
# https://github.com/pytorch/pytorch/issues/20124
if self._step_count == 1:
if not hasattr(self.optimizer.step, "_with_counter"):
warnings.warn("Seems like `optimizer.step()` has been overridden after learning rate scheduler "
"initialization. Please, make sure to call `optimizer.step()` before "
"`lr_scheduler.step()`. See more details at "
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
# Just check if there were two first lr_scheduler.step() calls before optimizer.step()
elif self.optimizer._step_count < 1:
warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
"In PyTorch 1.1.0 and later, you should call them in the opposite order: "
"`optimizer.step()` before `lr_scheduler.step()`. Failure to do this "
"will result in PyTorch skipping the first value of the learning rate schedule. "
"See more details at "
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
self._step_count += 1
class _enable_get_lr_call:
def __init__(self, o):
self.o = o
def __enter__(self):
self.o._get_lr_called_within_step = True
return self
def __exit__(self, type, value, traceback):
self.o._get_lr_called_within_step = False
return self
with _enable_get_lr_call(self):
if epoch is None:
self.last_epoch += 1
values = self.get_lr()
else:
self.last_epoch = epoch
if hasattr(self, "_get_closed_form_lr"):
values = self._get_closed_form_lr()
else:
values = self.get_lr()
for param_group, lr in zip(self.optimizer.param_groups, values):
param_group['lr'] = lr
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
class CosineAnnealingWarmRestarts(_LRScheduler):
r"""Set the learning rate of each parameter group using a cosine annealing
schedule, where :math:`\eta_{max}` is set to the initial lr, :math:`T_{cur}`
is the number of epochs since the last restart and :math:`T_{i}` is the number
of epochs between two warm restarts in SGDR:
.. math::
\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
\cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right)
When :math:`T_{cur}=T_{i}`, set :math:`\eta_t = \eta_{min}`.
When :math:`T_{cur}=0` after restart, set :math:`\eta_t=\eta_{max}`.
It has been proposed in
`SGDR: Stochastic Gradient Descent with Warm Restarts`_.
Args:
optimizer (Optimizer): Wrapped optimizer.
T_0 (int): Number of iterations for the first restart.
T_mult (int, optional): A factor increases :math:`T_{i}` after a restart. Default: 1.
eta_min (float, optional): Minimum learning rate. Default: 0.
last_epoch (int, optional): The index of last epoch. Default: -1.
.. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
https://arxiv.org/abs/1608.03983
"""
def __init__(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1):
if T_0 <= 0 or not isinstance(T_0, int):
raise ValueError("Expected positive integer T_0, but got {}".format(T_0))
if T_mult < 1 or not isinstance(T_mult, int):
raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult))
self.T_0 = T_0
self.T_i = T_0
self.T_mult = T_mult
self.eta_min = eta_min
super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch)
self.T_cur = self.last_epoch
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.", DeprecationWarning)
return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.T_cur / self.T_i)) / 2
for base_lr in self.base_lrs]
def step(self, epoch=None):
"""Step could be called after every batch update
Example:
>>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult)
>>> iters = len(dataloader)
>>> for epoch in range(20):
>>> for i, sample in enumerate(dataloader):
>>> inputs, labels = sample['inputs'], sample['labels']
>>> scheduler.step(epoch + i / iters)
>>> optimizer.zero_grad()
>>> outputs = net(inputs)
>>> loss = criterion(outputs, labels)
>>> loss.backward()
>>> optimizer.step()
This function can be called in an interleaved way.
Example:
>>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult)
>>> for epoch in range(20):
>>> scheduler.step()
>>> scheduler.step(26)
>>> scheduler.step() # scheduler.step(27), instead of scheduler(20)
"""
if epoch is None and self.last_epoch < 0:
epoch = 0
if epoch is None:
epoch = self.last_epoch + 1
self.T_cur = self.T_cur + 1
if self.T_cur >= self.T_i:
self.T_cur = self.T_cur - self.T_i
self.T_i = self.T_i * self.T_mult
else:
if epoch < 0:
raise ValueError("Expected non-negative epoch, but got {}".format(epoch))
if epoch >= self.T_0:
if self.T_mult == 1:
self.T_cur = epoch % self.T_0
else:
n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult))
self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1)
self.T_i = self.T_0 * self.T_mult ** (n)
else:
self.T_i = self.T_0
self.T_cur = epoch
self.last_epoch = math.floor(epoch)
class _enable_get_lr_call:
def __init__(self, o):
self.o = o
def __enter__(self):
self.o._get_lr_called_within_step = True
return self
def __exit__(self, type, value, traceback):
self.o._get_lr_called_within_step = False
return self
with _enable_get_lr_call(self):
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
def read_text(filename):
df = pd.read_excel(filename)
text = {}
for i in df.index.values: # Gets the index of the row number and traverses it
count = len(df.Description[i].split())
if count < 9:
df.Description[i] = df.Description[i] + ' EOF XXX' * (9 - count)
text[df.Image[i]] = df.Description[i]
return text # return dict (key: values)
def read_text_LV(filename):
df = pd.read_excel(filename)
text = {}
for i in df.index.values: # Gets the index of the row number and traverses it
count = len(df.Description[i].split())
if count < 30:
df.Description[i] = df.Description[i] + ' EOF XXX' * (20 - count) # LV_loss: 24
text[df.Image[i]] = df.Description[i]
return text # return dict (key: values)
# Unification images processing
def get_thum(image, size=(224, 224), greyscale=False):
image = image.resize(size, Image.ANTIALIAS)
if greyscale:
image = image.convert('L')
return image
# Calculate the cosine distance between pictures
def img_similarity_vectors_via_numpy(image1, image2):
image1 = get_thum(image1)
image2 = get_thum(image2)
images = [image1, image2]
vectors = []
norms = []
for image in images:
vector = []
for pixel_turple in image.getdata():
vector.append(average(pixel_turple))
vectors.append(vector)
norms.append(linalg.norm(vector, 2))
a, b = vectors
a_norm, b_norm = norms
res = dot(a / a_norm, b / b_norm)
return res