-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathips.py
244 lines (183 loc) · 7.63 KB
/
ips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
from abc import ABCMeta
from sklearn.svm import SVC, SVR
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
build_acc = []
floor_acc = []
long_scaler = MinMaxScaler()
lat_scaler = MinMaxScaler()
def load(train_path, valid_path):
train_data_frame = pd.read_csv(train_path)
train_data_frame = train_data_frame[(train_data_frame.LATITUDE != 0.0) & (train_data_frame.LONGITUDE != 0.0) &
(train_data_frame.BUILDINGID == 2)]
test_data_frame = pd.read_csv(valid_path)
test_data_frame = test_data_frame[(test_data_frame.LATITUDE != 0.0) & (test_data_frame.LONGITUDE != 0.0) &
(test_data_frame.BUILDINGID == 2)]
rest_data_frame = train_data_frame
valid_data_trame = pd.DataFrame(columns=train_data_frame.columns)
valid_num = int(len(train_data_frame)/10)
sample_row = rest_data_frame.sample(valid_num)
rest_data_frame = rest_data_frame.drop(sample_row.index)
valid_data_trame = valid_data_trame.append(sample_row)
train_data_frame = rest_data_frame
# Split data frame and return
training_x = train_data_frame.get_values().T[:520].T
training_y = train_data_frame.get_values().T[[520, 521, 522, 523], :].T
validation_x = valid_data_trame.get_values().T[:520].T
validation_y = valid_data_trame.get_values().T[[520, 521, 522, 523], :].T
testing_x = test_data_frame.get_values().T[:520].T
testing_y = test_data_frame.get_values().T[[520, 521, 522, 523], :].T
return training_x, training_y, validation_x, validation_y, testing_x, testing_y
def normalize_x(x_array):
res = np.copy(x_array).astype(np.float)
for i in range(np.shape(res)[0]):
for j in range(np.shape(res)[1]):
if res[i][j] == 100:
res[i][j] = 0
else:
res[i][j] = -0.01 * res[i][j]
return res
def normalize_y(longs, lats):
global long_scaler
global lat_scaler
longs = np.reshape(longs, [-1, 1])
lats = np.reshape(lats, [-1, 1])
long_scaler.fit(longs)
lat_scaler.fit(lats)
return np.reshape(long_scaler.transform(longs), [-1]), \
np.reshape(lat_scaler.transform(lats), [-1])
def reverse_normalizeY(longs, lats):
global long_scaler
global lat_scaler
longs = np.reshape(longs, [-1, 1])
lats = np.reshape(lats, [-1, 1])
return np.reshape(long_scaler.inverse_transform(longs), [-1]), \
np.reshape(lat_scaler.inverse_transform(lats), [-1])
class Model( object):
__metaclass__ = ABCMeta
# ML model object
longitude_regression_model = None
latitude_regression_model = None
# Training data
normalize_x = None
longitude_normalize_y = None
latitude_normalize_y = None
def __init__(self):
pass
def _preprocess(self, x, y):
self.normalize_x = normalize_x(x)
self.longitude_normalize_y, self.latitude_normalize_y = normalize_y(y[:, 0], y[:, 1])
self.floorID_y = y[:, 2]
self.buildingID_y = y[:, 3]
def fit(self, x, y):
# Data pre-processing
self._preprocess(x, y)
self.longitude_regression_model.fit(self.normalize_x, self.longitude_normalize_y)
self.latitude_regression_model.fit(self.normalize_x, self.latitude_normalize_y)
def predict(self, x):
# Testing
x = normalize_x(x)
predict_longitude = self.longitude_regression_model.predict(x)
predict_latitude = self.latitude_regression_model.predict(x)
# Reverse normalization
predict_longitude, predict_latitude = reverse_normalizeY(predict_longitude, predict_latitude)
# Return the result
res = np.concatenate((np.expand_dims(predict_longitude, axis=-1),
np.expand_dims(predict_latitude, axis=-1)), axis=-1)
return res
def error(self, x, y):
_y = self.predict(x)
dist = np.sqrt(np.square(_y[:, 0] - y[:, 0]) + np.square(_y[:, 1] - y[:, 1]))
#plot_dist_error(dist)
#map_plot(_y, y)
print(min(dist), np.mean(dist), max(dist))
return dist
class SVM(Model):
def __init__(self):
super().__init__()
self.longitude_regression_model = SVR(verbose=True)
self.latitude_regression_model = SVR(verbose=True)
self.floor_classifier = SVC(verbose=True)
#self.building_classifier = SVC(verbose=True)
class RandomForest(Model):
def __init__(self):
super().__init__()
self.longitude_regression_model = RandomForestRegressor()
self.latitude_regression_model = RandomForestRegressor()
self.floor_classifier = RandomForestClassifier()
#self.building_classifier = RandomForestClassifier()
class GradientBoostingDecisionTree(Model):
def __init__(self):
super().__init__()
self.longitude_regression_model = GradientBoostingRegressor()
self.latitude_regression_model = GradientBoostingRegressor()
self.floor_classifier = GradientBoostingClassifier()
#self.building_classifier = GradientBoostingClassifier()
def plot_dist_error(dist):
dist = dist.tolist()
t = np.arange(0.0, len(dist), 1)
y_mean = [np.mean(dist)]*len(dist)
fig, ax = plt.subplots()
ax.plot(t, dist, label='Error value')
ax.plot(t, y_mean, label='Mean', linestyle='--', color='red')
ax.set(xlabel='Data points (ID)', ylabel='Error (m)',
title='Error value of points using baseline Random Forest')
ax.grid()
fig.savefig("error.png")
plt.legend()
plt.show()
def map_plot(_y, y):
# take the first two features
h = .02 # step size in the mesh
# Calculate min, max and limits
x_min, x_max = y[:, 0].min() - 1, y[:, 0].max() + 1
y_min, y_max = y[:, 1].min() - 1, y[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Put the result into a color plot
plt.figure()
plt.scatter(y[:, 0], y[:, 1], alpha=0.5, s=7, marker='o', label='actual position')
plt.scatter(_y[:, 0], _y[:, 1], alpha=0.3, s=4, marker='o', label='predicted position')
plt.xlim(xx.min()-20, xx.max()+20)
plt.ylim(yy.min()-20, yy.max()+20)
plt.legend()
plt.grid()
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title("Data points")
plt.tight_layout(pad=0)
plt.savefig('data_points.png')
plt.show()
def bar_plot(lst):
method = ['SVM', 'Random Forest', 'Boosting Decision Tree'] # nom = ['Obama', 'Romney', 'Johson', 'Stein']
data = lst # [51.258, 47.384, 0.992, 0.365]
x_pos = [x for x in range(len(data))]
fig = plt.figure()
ax = fig.add_subplot(111)
colorsBox = ['r', 'b', 'c', 'y', 'purple', 'green', 'k', 'magenta', 'firebrick']
for x in range(len(data)):
ax.bar(x_pos[x], data[x], color=colorsBox[x], label=method[x], align='center')
#plt.xlabel('Nominees')
plt.title("Floor classification for buildingID=2")
plt.ylabel('Accuracy(%)')
plt.ylim(bottom=50, top=100)
plt.xticks(x_pos, method)
plt.legend()
plt.tight_layout()
plt.savefig('floor.pdf', bbox_inches=None)
plt.close()
if __name__ == '__main__':
train_csv_path = 'TrainingData.csv'
valid_csv_path = 'ValidationData.csv'
train_x, train_y, valid_x, valid_y, test_x, test_y = load(train_csv_path, valid_csv_path)
# Training
SVM = SVM()
SVM.fit(train_x, train_y)
RF = RandomForest()
RF.fit(train_x, train_y)
GBDT = GradientBoostingDecisionTree()
GBDT.fit(train_x, train_y)
RF.error(test_x, test_y)