-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
151 lines (112 loc) · 4.13 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import cv2
import numpy as np
import os
from random import shuffle
from tqdm import tqdm
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
# Visualize training history
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# TRAIN_DIR = 'E:\\diagnetic_Retinopathy\\train'
TRAIN_DIR = 'C:\\project_folder\\diabetes_Retinopathy\\train'
# TEST_DIR = 'E:\\diagnetic_Retinopathy\\test'
TEST_DIR = 'C:\\project_folder\\diabetes_Retinopathy\\test'
IMG_SIZE = 50
LR = 1e-3
MODEL_NAME = 'diabeticRetinopathy-{}-{}.model'.format(LR, '2conv-basic')
def label_img(img):
word_label = img[0]
print(word_label)
if word_label == 'm':
print('Mild')
return [1,0,0,0,0]
elif word_label == 'd':
print('Moderate')
return [0,1,0,0,0]
elif word_label == 'n':
print('NO_DR')
return [0,0,1,0,0]
elif word_label == 'p':
print('proliferate')
return [0,0,0,1,0]
elif word_label == 's':
print('Severe')
return [0,0,0,0,1]
def create_train_data():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR)):
label = label_img(img)
print('##############')
print(label)
path = os.path.join(TRAIN_DIR,img)
img = cv2.imread(path,cv2.IMREAD_COLOR)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
#img = cv2.resize(img,None,fx=0.5,fy=0.5)
training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data
def process_test_data():
testing_data = []
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR,img)
img_num = img.split('.')[0]
img = cv2.imread(path,cv2.IMREAD_COLOR)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
testing_data.append([np.array(img), img_num])
shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data
train_data = create_train_data()
# If you have already created the dataset:
#train_data = np.load('train_data.npy')
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
import tensorflow as tf
from tensorflow.python.framework import ops
import matplotlib.pyplot as plt
#tf.reset_default_graph()
ops.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 3], name='input')
convnet = conv_2d(convnet, 32, 3, activation='relu')
convnet = max_pool_2d(convnet, 3)
convnet = conv_2d(convnet, 64, 3, activation='relu')
convnet = max_pool_2d(convnet, 3)
convnet = conv_2d(convnet, 128, 3, activation='relu')
convnet = max_pool_2d(convnet, 3)
convnet = conv_2d(convnet, 32, 3, activation='relu')
convnet = max_pool_2d(convnet, 3)
convnet = conv_2d(convnet, 64, 3, activation='relu')
convnet = max_pool_2d(convnet, 3)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 5, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log')
if os.path.exists('{}.meta'.format(MODEL_NAME)):
model.load(MODEL_NAME)
print('model loaded!')
train = train_data[:-1]
test = train_data[:-1]
X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
Y = [i[1] for i in train]
print(X.shape)
test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
test_y = [i[1] for i in test]
print(test_x.shape)
history=model.fit({'input': X}, {'targets': Y},n_epoch=50, validation_set=({'input': test_x}, {'targets': test_y}),snapshot_step=20, show_metric=True, run_id=MODEL_NAME)
model.save(MODEL_NAME)
h=history.history
plt.plot(h['accuracy'])
plt.plot(h['val_accuracy'], c="red")
plt.title("acc vs v-acc")
plt.show()
plt.savefig("accuracy plot")
plt.plot(h['loss'])
plt.plot(h['val_loss'], c="red")
plt.title("loss vs v-loss")
plt.show()
plt.savefig("loss plot")