forked from UKPLab/MetaQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetaQA.py
406 lines (356 loc) · 18.4 KB
/
MetaQA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
from __future__ import annotations
from MetaQA import (Extractive_QA_Dataset,
SIQA_Dataset,
BoolQ_Dataset,
HellaSWAG_Dataset,
CommonSenseQA_Dataset,
RACE_Dataset,
DROP_Dataset,
NarrativeQA_Dataset,
HybridQA_Dataset,
List_QA_Datasets
)
from MetaQA import QA_Agent
from MetaQA import MetaQA_Dataset
import torch
from MetaQA.MetaQA_Model import MetaQA_Model
from transformers import AutoTokenizer, Trainer, TrainingArguments
import glob
import os
import json
import datetime
import numpy as np
import glob
from pathlib import Path
import pickle
from tqdm import tqdm
import pandas as pd
import argparse
import random
import yaml
# %%
def load_extractive_qa_datasets(datasets, data_path):
dict_dataset2path = {}
dict_dataset2path.update({dat: os.path.join(data_path,'extractive/mrqa', dat+'.json') for dat in datasets['mrqa']})
dict_dataset2path.update({dat: os.path.join(data_path,'extractive', dat+'.json') for dat in datasets['others']})
list_extractive_qa_datasets = []
for dataset_name in datasets['mrqa'] + datasets['others']:
qa_dataset = Extractive_QA_Dataset(dict_dataset2path[dataset_name], dataset_name)
list_extractive_qa_datasets.append(qa_dataset)
return list_extractive_qa_datasets
def load_multiple_choice_datasets(datasets, split, data_path=None):
if split in ['validation', 'test']:
return load_multiple_choice_datasets_eval(datasets, data_path)
else:
list_multiple_choice_qa_datasets = []
if 'SIQA' in datasets:
siqa = SIQA_Dataset(split)
list_multiple_choice_qa_datasets.append(siqa)
if 'BoolQ' in datasets:
boolq = BoolQ_Dataset(split)
list_multiple_choice_qa_datasets.append(boolq)
if 'HellaSWAG' in datasets:
hellaswag = HellaSWAG_Dataset(split)
list_multiple_choice_qa_datasets.append(hellaswag)
if 'CommonSenseQA' in datasets:
commonsense_qa = CommonSenseQA_Dataset(split)
list_multiple_choice_qa_datasets.append(commonsense_qa)
if 'RACE' in datasets:
race = RACE_Dataset('all', split)
list_multiple_choice_qa_datasets.append(race)
return list_multiple_choice_qa_datasets
def load_multiple_choice_datasets_eval(datasets, data_path):
list_multiple_choice_qa_datasets = []
if 'SIQA' in datasets:
with open(os.path.join(data_path, 'multiple_choice', 'SIQA_qids.json')) as f:
list_idx2load = json.load(f)
siqa = SIQA_Dataset('validation', list_idx2load)
list_multiple_choice_qa_datasets.append(siqa)
if 'BoolQ' in datasets:
with open(os.path.join(data_path, 'multiple_choice', 'BoolQ_qids.json')) as f:
list_idx2load = json.load(f)
boolq = BoolQ_Dataset('validation', list_idx2load)
list_multiple_choice_qa_datasets.append(boolq)
if 'HellaSWAG' in datasets:
with open(os.path.join(data_path, 'multiple_choice', 'HellaSWAG_qids.json')) as f:
list_idx2load = json.load(f)
hellaswag = HellaSWAG_Dataset('validation', list_idx2load)
list_multiple_choice_qa_datasets.append(hellaswag)
if 'CommonSenseQA' in datasets:
with open(os.path.join(data_path, 'multiple_choice', 'CommonSenseQA_qids.json')) as f:
list_idx2load = json.load(f)
commonsense_qa = CommonSenseQA_Dataset('validation', list_idx2load)
list_multiple_choice_qa_datasets.append(commonsense_qa)
if 'RACE' in datasets:
race = RACE_Dataset('all', 'test')
list_multiple_choice_qa_datasets.append(race)
return list_multiple_choice_qa_datasets
def load_abstractive_datasets(datasets, split, data_path):
list_abstractive_datasets = []
if 'DROP' in datasets:
if split == 'train':
drop = DROP_Dataset(split)
else:
with open(os.path.join(data_path, 'abstractive', 'DROP_qids.json')) as f:
list_idx2load = json.load(f)
drop = DROP_Dataset('validation', list_idx2load)
list_abstractive_datasets.append(drop)
if 'NarrativeQA' in datasets:
narrativeqa = NarrativeQA_Dataset(data_path)
list_abstractive_datasets.append(narrativeqa)
return list_abstractive_datasets
def load_multimodal_datasets(datasets, split, data_path):
list_multimodal_datasets = []
if 'HybridQA' in datasets:
if split == 'train':
hybridqa = HybridQA_Dataset(split)
else:
with open(os.path.join(data_path, 'multimodal', 'HybridQA_qids.json')) as f:
list_idx2load = json.load(f)
hybridqa = HybridQA_Dataset('validation', list_idx2load)
list_multimodal_datasets.append(hybridqa)
return list_multimodal_datasets
def load_datasets(datasets, data_path, split):
assert split in ['train', 'validation', 'test']
# 1) load extractive datasets
list_extractive_qa_datasets = load_extractive_qa_datasets(datasets['extractive'], data_path)
# 2) load multiple choice datasets
list_multiple_choice_qa_datasets = load_multiple_choice_datasets(datasets['multiple_choice'], split, data_path)
# 3) load abstractive datasets
list_abstractive_datasets = load_abstractive_datasets(datasets['abstractive'], split, data_path)
# 4) load MultiModal datasets
list_multi_modal_datasets = load_multimodal_datasets(datasets['multimodal'], split, data_path)
# 5) combine datasets
list_all_datasets = list_extractive_qa_datasets + list_multiple_choice_qa_datasets + list_abstractive_datasets + list_multi_modal_datasets
name_all_datasets = " ".join([x.dataset_name for x in list_all_datasets])
shuffle = split == 'train'
list_qa_datasets = List_QA_Datasets(list_all_datasets, name_all_datasets, shuffle=shuffle)
return list_qa_datasets, list_all_datasets
# %%
def load_agents(CONFIG, split):
list_qa_agents: list(QA_Agent) = []
for qa_agent_name in tqdm(CONFIG['agents2training_dataset'].keys()):
list_pred_files = []
list_path_pred_folder = glob.glob(os.path.join(CONFIG['paths']['agents_path'], qa_agent_name, split, '*/*/'))
for folder in list_path_pred_folder:
path_pred_topk = os.path.join(folder, 'predict_nbest_predictions.json')
path_best_pred = os.path.join(folder, 'predict_predictions.json')
path_seq_clas_pred = os.path.join(folder, 'seq_clas_predict_predictions.json')
if os.path.exists(path_pred_topk):
list_pred_files.append(path_pred_topk)
elif os.path.exists(path_best_pred):
list_pred_files.append(path_best_pred)
elif os.path.exists(path_seq_clas_pred):
list_pred_files.append(path_seq_clas_pred)
elif 'NarrativeQA' in folder or 'HybridQA' in folder or 'DROP' in folder:
path_best_pred = os.path.join(folder, 'predictions.json')
list_pred_files.append(path_best_pred)
qa_agent = QA_Agent(qa_agent_name, list_pred_files)
if qa_agent.get_num_preds() == 0:
print(f'ERROR LOADING AGENT {qa_agent_name}')
print(list_path_pred_folder)
raise Exception
list_qa_agents.append(qa_agent)
return list_qa_agents
# %%
def create_metaqa_dataset(args, datasets, data_path, list_qa_agents, dict_training_dataset2qa_agent_idx, split, training_sample_size=None):
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_weights)
list_qa_datasets, list_all_datasets = load_datasets(datasets, data_path, split)
is_train = split == 'train'
metaqa_dataset = MetaQA_Dataset(tokenizer,
list_qa_datasets,
list_qa_agents ,
dict_training_dataset2qa_agent_idx,
num_samples_per_dataset=training_sample_size,
train=is_train, sc_emb_ablation=args.sc_emb_ablation)
return metaqa_dataset, list_all_datasets
# %%
def top_k(a, k):
'''
Return the index of the k largest elements of a in ascending order.
'''
return np.argsort(a)[:k]
def raw_preds2str(raw_preds, dict_idx2id, list_qa_agents: list(QA_Agent)):
list_metaqa_decisions = np.argmax(raw_preds.predictions[:,:,1], axis=1)
dict_qid2pred = {}
for idx, pred_qa_agent_idx in enumerate(list_metaqa_decisions):
# get question id
qid = dict_idx2id[idx]
# get prediction from that agent
pred_qa_agent = list_qa_agents[pred_qa_agent_idx]
pred = pred_qa_agent.get_prediction(qid)
dict_qid2pred[qid] = {'txt': pred.text, 'prob': pred.score, 'QA_agent': pred_qa_agent.agent_name}
# force to have a valid prediction (non-empty)
if dict_qid2pred[qid]['txt'] == ' ':
num_qa_agents = len(list_qa_agents)
list_idx_best_qa_agents = top_k(-raw_preds.predictions[:,:,1][idx], num_qa_agents)
# select the best agent whose output is not ' '
for idx_best_qa_agent in list_idx_best_qa_agents:
pred_qa_agent = list_qa_agents[idx_best_qa_agent]
pred = pred_qa_agent.get_prediction(qid)
dict_qid2pred[qid] = {'txt': pred.text, 'prob': pred.score, 'QA_agent': pred_qa_agent.agent_name}
if dict_qid2pred[qid]['txt'] != ' ':
break
return dict_qid2pred
# %%
def is_already_trained(seed):
list_stored_models = glob.glob(os.path.join(CONFIG['paths']['model_base_path'], "*"))
return seed in [x.split("/")[-1].split("_")[-1] for x in list_stored_models]
# %%
def create_model(args, model_base_path, metaqa_training_dataset, seed):
num_agents = len(metaqa_training_dataset.list_qa_agents)
model = MetaQA_Model.from_pretrained(args.pretrained_weights, num_agents=num_agents,
loss_ablation=args.loss_ablation)
model_full_name = args.model_name + "_" + str(args.training_sample_size) + '_' + str(datetime.datetime.now().strftime("%Y%m%d")) + '_' + str(seed)
output_path = os.path.join(model_base_path, model_full_name)
Path(output_path).mkdir(parents=True, exist_ok=True)
log_path = os.path.join(output_path, 'logs')
Path(log_path).mkdir(parents=True, exist_ok=True)
training_args = TrainingArguments(
output_dir=output_path, # output directory
num_train_epochs=1, # total number of training epochs
per_device_train_batch_size=6, # batch size per device during training
per_device_eval_batch_size=32, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir=log_path, # directory for storing logs
logging_steps=1000,
report_to="none",
evaluation_strategy='no',
save_strategy='epoch',
)
trainer = Trainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=metaqa_training_dataset, # training dataset
# eval_dataset=metaqa_dev_dataset, # validation dataset
)
return trainer, model, output_path
# %%
def load_model(args, metaqa_dataset):
num_agents = len(metaqa_dataset.list_qa_agents)
model = MetaQA_Model.from_pretrained(args.pretrained_metaqa_path, num_agents=num_agents,
loss_ablation=args.loss_ablation)
trainer = Trainer(
model=model,
)
return trainer
# %%
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
# %%
def save_metadata(args, metaqa_training_dataset, seed, output_path):
dict_metadata = {'list_datasets': metaqa_training_dataset.get_list_dataset_names(),
'list_qa_agents': [x.agent_name for x in metaqa_training_dataset.list_qa_agents],
'training_sample_size': args.training_sample_size,
'random_seed': seed
}
with open(os.path.join(output_path, 'metadata.json') , 'w') as f:
json.dump(dict_metadata, f)
# %%
def inference(trainer, metaqa_test_dataset, output_path):
# 1) get raw predictions
raw_preds = trainer.predict(metaqa_test_dataset)
## save raw preds
timestamp = str(datetime.datetime.now().strftime("%Y%m%d"))
output_path = os.path.join(output_path, 'test_preds_' + timestamp)
## create the output path
Path(output_path).mkdir(parents=True, exist_ok=True)
## store
with open(os.path.join(output_path, 'raw_preds.p') , 'wb') as f:
pickle.dump(raw_preds, f)
# 2) get QA preds, i.e., qid->preds
dict_qid2pred = raw_preds2str(raw_preds, metaqa_test_dataset.dict_idx2qid, metaqa_test_dataset.list_qa_agents)
with open(os.path.join(output_path, 'preds.json') , 'w') as f:
json.dump(dict_qid2pred, f)
return dict_qid2pred
# %%
def evaluate(list_all_datasets, dict_qid2pred):
pbar = tqdm(list_all_datasets)
dict_results = {}
for dataset in pbar:
pbar.set_description(f'Evaluating {dataset}')
# 1) get the predictions for this dataset
preds_parition = {qid: pred['txt'] for qid, pred in dict_qid2pred.items() if qid in dataset.list_qids}
# 2) evaluate the predictions
res = dataset.evaluate(preds_parition)
# 3) save the results
dict_results[dataset.dataset_name] = res
return dict_results
def main(args, CONFIG):
if args.do_train:
CONFIG['paths']['model_base_path'] = os.path.join(CONFIG['paths']['output_path'], args.model_name)
if args.do_test:
list_test_qa_agents = load_agents(CONFIG, 'test')
metaqa_test_dataset, list_all_test_datasets = create_metaqa_dataset(args, CONFIG['datasets'], CONFIG['paths']['test_data_path'], list_test_qa_agents, CONFIG['training_dataset2qa_agent_idx'], 'test')
list_train_qa_agents = load_agents(CONFIG, 'train')
random.seed(args.seed)
list_rnd_seeds = random.sample(range(1, 10000), args.num_models)
for seed in list_rnd_seeds:
# 0) do we need to train this model?
if is_already_trained(seed):
# to prevent retraining the model training with the same seed. Important when preemted jobs
continue
#1) load training dataset
set_seed(seed)
# the training datset is a random subsample of 10K/QA dataset, so we need to create it every time with a new seed
metaqa_training_dataset, list_all_train_datasets = create_metaqa_dataset(args, CONFIG['datasets'], CONFIG['paths']['train_data_path'], list_train_qa_agents,
CONFIG['training_dataset2qa_agent_idx'], 'train',
training_sample_size=args.training_sample_size)
# 2) create model
trainer, model, output_path = create_model(args, CONFIG['paths']['model_base_path'], metaqa_training_dataset, seed)
# 3) train model
train_output = trainer.train()
# 4) save train_output to file
with open(os.path.join(output_path, 'train_output.json'), 'w') as f:
json.dump(train_output._asdict(), f)
save_metadata(args, metaqa_training_dataset, seed, output_path)
if args.do_test:
# 5) inference on test set
dict_qid2pred = inference(trainer, metaqa_test_dataset, output_path)
# 6) evaluate
dict_results = evaluate(list_all_test_datasets, dict_qid2pred)
with open(os.path.join(output_path, 'results.json'), 'w') as f:
json.dump(dict_results, f)
if not args.do_train and args.do_test:
# 1) load agents
list_test_qa_agents = load_agents(CONFIG, 'test')
# 2) load test dataset
metaqa_test_dataset, list_all_test_datasets = create_metaqa_dataset(args, CONFIG['datasets'], CONFIG['paths']['test_data_path'], list_test_qa_agents, CONFIG['training_dataset2qa_agent_idx'], 'test')
# 3) load MetaQA
trainer = load_model(args, metaqa_test_dataset)
# 4) inference on the test set
output_path = args.pretrained_metaqa_path
dict_qid2pred = inference(trainer, metaqa_test_dataset, output_path)
# 5) evaluate
dict_results = evaluate(list_all_test_datasets, dict_qid2pred)
with open(os.path.join(output_path, 'results.json'), 'w') as f:
json.dump(dict_results, f)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--do_train", action="store_true", help="train the model")
parser.add_argument("--do_validation", action="store_true", help="")
parser.add_argument("--do_test", action="store_true", help="Evaluate the model on the test set")
parser.add_argument("--loss_ablation", action="store_true", help="Remove loss AgSeN")
parser.add_argument("--sc_emb_ablation", action="store_true", help="Remove Score Embeddings")
parser.add_argument("--model_name", help="name of the model to load/save")
parser.add_argument("--seed", default=2021, type=int, help="seed for randomness")
parser.add_argument("--num_models", default=1, type=int, help="number of models to train (for hypotehsis testing)")
parser.add_argument("--pretrained_weights", default='bert-base-uncased', help="default: 'bert-base-uncased'")
parser.add_argument("--training_sample_size", default=10000, type=int, help="default: num samples/dataset")
parser.add_argument("--config", default='./config.yaml', help="path to config.yaml", )
parser.add_argument("--pretrained_metaqa_path", help="path of the MetaQA checkpoint to load (only when do_train=False and do_test=True)", )
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
with open(args.config, 'r') as f:
CONFIG = yaml.load(f, Loader=yaml.CLoader)
CONFIG['training_dataset2qa_agent_idx'] = {training_dataset: idx for idx, (_, training_dataset) in enumerate(CONFIG['agents2training_dataset'].items())}
main(args, CONFIG)