forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathghostnet.py
318 lines (287 loc) · 10.9 KB
/
ghostnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/huawei-noah/CV-Backbones/tree/master/ghostnet_pytorch
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, AdaptiveAvgPool2D, Linear
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Uniform, KaimingNormal
from paddleseg.cvlibs import manager
from paddleseg.utils import utils, logger
__all__ = ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3"]
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act="relu",
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(
initializer=KaimingNormal(), name=name + "_weights"),
bias_attr=False)
bn_name = name + "_bn"
self._batch_norm = BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(
name=bn_name + "_scale", regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset", regularizer=L2Decay(0.0)),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class SEBlock(nn.Layer):
def __init__(self, num_channels, reduction_ratio=4, name=None):
super(SEBlock, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
stdv = 1.0 / math.sqrt(num_channels * 1.0)
med_ch = num_channels // reduction_ratio
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_channels,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
pool = self.pool2d_gap(inputs)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = paddle.clip(x=excitation, min=0, max=1)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = paddle.multiply(inputs, excitation)
return out
class GhostModule(nn.Layer):
def __init__(self,
in_channels,
output_channels,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
relu=True,
name=None):
super(GhostModule, self).__init__()
init_channels = int(math.ceil(output_channels / ratio))
new_channels = int(init_channels * (ratio - 1))
self.primary_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=init_channels,
kernel_size=kernel_size,
stride=stride,
groups=1,
act="relu" if relu else None,
name=name + "_primary_conv")
self.cheap_operation = ConvBNLayer(
in_channels=init_channels,
out_channels=new_channels,
kernel_size=dw_size,
stride=1,
groups=init_channels,
act="relu" if relu else None,
name=name + "_cheap_operation")
def forward(self, inputs):
x = self.primary_conv(inputs)
y = self.cheap_operation(x)
out = paddle.concat([x, y], axis=1)
return out
class GhostBottleneck(nn.Layer):
def __init__(self,
in_channels,
hidden_dim,
output_channels,
kernel_size,
stride,
use_se,
name=None):
super(GhostBottleneck, self).__init__()
self._stride = stride
self._use_se = use_se
self._num_channels = in_channels
self._output_channels = output_channels
self.ghost_module_1 = GhostModule(
in_channels=in_channels,
output_channels=hidden_dim,
kernel_size=1,
stride=1,
relu=True,
name=name + "_ghost_module_1")
if stride == 2:
self.depthwise_conv = ConvBNLayer(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=kernel_size,
stride=stride,
groups=hidden_dim,
act=None,
name=name +
"_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
)
if use_se:
self.se_block = SEBlock(num_channels=hidden_dim, name=name + "_se")
self.ghost_module_2 = GhostModule(
in_channels=hidden_dim,
output_channels=output_channels,
kernel_size=1,
relu=False,
name=name + "_ghost_module_2")
if stride != 1 or in_channels != output_channels:
self.shortcut_depthwise = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=stride,
groups=in_channels,
act=None,
name=name +
"_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
)
self.shortcut_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=output_channels,
kernel_size=1,
stride=1,
groups=1,
act=None,
name=name + "_shortcut_conv")
def forward(self, inputs):
x = self.ghost_module_1(inputs)
if self._stride == 2:
x = self.depthwise_conv(x)
if self._use_se:
x = self.se_block(x)
x = self.ghost_module_2(x)
if self._stride == 1 and self._num_channels == self._output_channels:
shortcut = inputs
else:
shortcut = self.shortcut_depthwise(inputs)
shortcut = self.shortcut_conv(shortcut)
return paddle.add(x=x, y=shortcut)
class GhostNet(nn.Layer):
def __init__(self, scale, in_channels=3, pretrained=None):
super(GhostNet, self).__init__()
self.cfgs = [
# k, t, c, SE, s
[3, 16, 16, 0, 1],
[3, 48, 24, 0, 2],
[3, 72, 24, 0, 1], # x4
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1], # x8
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1], # x16
[5, 672, 160, 1, 2],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1] # x32
]
self.scale = scale
self.pretrained = pretrained
output_channels = int(self._make_divisible(16 * self.scale, 4))
self.conv1 = ConvBNLayer(
in_channels=in_channels,
out_channels=output_channels,
kernel_size=3,
stride=2,
groups=1,
act="relu",
name="conv1")
# build inverted residual blocks
self.out_index = [2, 4, 10, 15]
self.feat_channels = []
self.ghost_bottleneck_list = []
for idx, (k, exp_size, c, use_se, s) in enumerate(self.cfgs):
in_channels = output_channels
output_channels = int(self._make_divisible(c * self.scale, 4))
hidden_dim = int(self._make_divisible(exp_size * self.scale, 4))
ghost_bottleneck = self.add_sublayer(
name="_ghostbottleneck_" + str(idx),
sublayer=GhostBottleneck(
in_channels=in_channels,
hidden_dim=hidden_dim,
output_channels=output_channels,
kernel_size=k,
stride=s,
use_se=use_se,
name="_ghostbottleneck_" + str(idx)))
self.ghost_bottleneck_list.append(ghost_bottleneck)
if idx in self.out_index:
self.feat_channels.append(output_channels)
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
def forward(self, inputs):
feat_list = []
x = self.conv1(inputs)
for idx, ghost_bottleneck in enumerate(self.ghost_bottleneck_list):
x = ghost_bottleneck(x)
if idx in self.out_index:
feat_list.append(x)
return feat_list
def _make_divisible(self, v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
@manager.BACKBONES.add_component
def GhostNet_x0_5(**kwargs):
model = GhostNet(scale=0.5, **kwargs)
return model
@manager.BACKBONES.add_component
def GhostNet_x1_0(**kwargs):
model = GhostNet(scale=1.0, **kwargs)
return model
@manager.BACKBONES.add_component
def GhostNet_x1_3(**kwargs):
model = GhostNet(scale=1.3, **kwargs)
return model