-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
260 lines (225 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
'''
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
'''
import os
from os.path import join, exists
import argparse
from random import choice, choices
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, ConcatDataset, random_split
import random
import json
from dataset_mimic_full import mimicfull_VQAFeatureDataset, Dictionary
from model.regat import build_regat
from config.parser import parse_with_config
from train import train, evaluate
from utils import utils
from utils.utils import trim_collate
import wandb
# os.environ['CUDA_LAUNCH_BLOCKING']='1'
# os.environ['CUDA_VISIBLE_DEVICES']='1'
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1', 'True'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0', 'False'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
def parse_args():
parser = argparse.ArgumentParser()
'''
For training logistics
'''
parser.add_argument('--epochs', type=int, default=40)
parser.add_argument('--base_lr', type=float, default=0.001) # 7e-5
parser.add_argument('--lr_decay_start', type=int, default=15)
parser.add_argument('--lr_decay_rate', type=float, default=0.5)
parser.add_argument('--lr_decay_step', type=int, default=2)
parser.add_argument('--lr_decay_based_on_val', action='store_true',
help='Learning rate decay when val score descreases')
parser.add_argument('--grad_accu_steps', type=int, default=1)
parser.add_argument('--grad_clip', type=float, default=0.25)
parser.add_argument('--weight_decay', type=float, default=5e-4) # 0
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--output', type=str, default='saved_models/')
parser.add_argument('--save_optim', action='store_true',
help='save optimizer')
parser.add_argument('--log_interval', type=int, default=-1,
help='Print log for certain steps')
parser.add_argument('--seed', type=int, default=-1, help='random seed')
'''
loading trained models
'''
parser.add_argument('--checkpoint', type=str, default="")
'''
For dataset
'''
parser.add_argument('--dataset', type=str, default="args.dataset",
choices=["medical-cxr-vqa"])
parser.add_argument('--data_folder', type=str, default='./data/medical_cxr_vqa')
parser.add_argument('--use_both', action='store_true',
help='use both train/val datasets to train?')
parser.add_argument('--use_vg', action='store_true',
help='use visual genome dataset to train?')
parser.add_argument('--adaptive', action='store_true',
help='adaptive or fixed number of regions')
'''
Model
'''
parser.add_argument('--relation_type', type=str, default='implicit',
choices=["spatial", "semantic", "implicit",]) # this argument doesn't work here. please go to medical_cxr_vqa.json
parser.add_argument('--fusion', type=str, default='butd', choices=["ban", "butd", "mutan"])
parser.add_argument('--tfidf', action='store_true',
help='tfidf word embedding?')
parser.add_argument('--op', type=str, default='c',
help="op used in tfidf word embedding")
parser.add_argument('--num_hid', type=int, default=1024)
'''
Fusion Hyperparamters
'''
parser.add_argument('--ban_gamma', type=int, default=1, help='glimpse')
parser.add_argument('--mutan_gamma', type=int, default=2, help='glimpse')
'''
Hyper-params for relations
'''
# hyper-parameters for implicit relation
parser.add_argument('--imp_pos_emb_dim', type=int, default=64,
help='geometric embedding feature dim')
# hyper-parameters for explicit relation
parser.add_argument('--spa_label_num', type=int, default=11,
help='number of edge labels in spatial relation graph')
parser.add_argument('--sem_label_num', type=int, default=15,
help='number of edge labels in \
semantic relation graph')
# shared hyper-parameters
parser.add_argument('--dir_num', type=int, default=2,
help='number of directions in relation graph')
parser.add_argument('--relation_dim', type=int, default=1024,
help='relation feature dim')
parser.add_argument('--nongt_dim', type=int, default=20,
help='number of objects consider relations per image')
parser.add_argument('--num_heads', type=int, default=16,
help='number of attention heads \
for multi-head attention')
parser.add_argument('--num_steps', type=int, default=1,
help='number of graph propagation steps')
parser.add_argument('--residual_connection', action='store_true',
help='Enable residual connection in relation encoder')
parser.add_argument('--label_bias', action='store_true',
help='Enable bias term for relation labels \
in relation encoder')
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--use_pos_emb', type=bool, default=False, help='only for graph classification net')
parser.add_argument('--dryrun', type=str2bool, default=True, help='wandb') # manually assign it here
parser.add_argument('--use_contrastive', type=bool, default=False, help='contrastive loss')
parser.add_argument('--pure_classification', type=bool, default=True, help='contrastive loss')
parser.add_argument('--cross_attention', type=bool, default=False, help='cross attention')
parser.add_argument('--testing_code', type=int, default=0, help='use spatial relation')
parser.add_argument('--ggnn', type=bool, default=False, help='use ggnn')
parser.add_argument('--state_dim', type=int, default=1024,)
parser.add_argument('--annotation_dim', type=int, default=60,)
parser.add_argument('--n_edge_types', type=int, default=3,)
parser.add_argument('--n_steps', type=int, default=2,)
parser.add_argument('--n_node', type=int, default=52, )
parser.add_argument('--KG_dim', type=int, default=600, )
parser.add_argument('--num_ans_candidates', type=int, default=3)
parser.add_argument('--mimic_cxr_png', type=str, default='/home/xinyue/dataset/mimic-cxr-png/',)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'], )
# can use config files
parser.add_argument('--config', default='config/medical_cxr_vqa.json', help='JSON config files')
args = parse_with_config(parser)
return args
if __name__ == '__main__':
# torch.autograd.set_detect_anomaly(True)
args = parse_args()
if not torch.cuda.is_available():
raise ValueError("CUDA is not available," +
"this code currently only support GPU.")
n_device = torch.cuda.device_count()
print("Found %d GPU cards for training" % (n_device))
device = torch.device("cuda")
# device = torch.device("cpu")
batch_size = args.batch_size
torch.backends.cudnn.benchmark = True
if args.seed != -1:
print("Predefined randam seed %d" % args.seed)
else:
# fix seed
args.seed = random.randint(1, 10000)
print("Choose random seed %d" % args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if "ban" == args.fusion:
fusion_methods = args.fusion+"_"+str(args.ban_gamma)
else:
fusion_methods = args.fusion
dictionary = Dictionary.load_from_file(args.data_folder, 'mimic_dictionary.pkl')
node_names = dictionary.node_names()
for name in node_names:
dictionary.add_word(name)
val_dset = mimicfull_VQAFeatureDataset(
'val', args.dataset, dictionary, args.relation_type, args.mimic_cxr_png, adaptive=args.adaptive,
pos_emb_dim=args.imp_pos_emb_dim, dataroot=args.data_folder, args=args)
train_dset = mimicfull_VQAFeatureDataset(
'train', args.dataset,dictionary, args.relation_type, args.mimic_cxr_png,
adaptive=args.adaptive, pos_emb_dim=args.imp_pos_emb_dim,
dataroot=args.data_folder, args=args)
test_dset = mimicfull_VQAFeatureDataset(
'test', args.dataset, dictionary, args.relation_type, args.mimic_cxr_png, adaptive=args.adaptive,
pos_emb_dim=args.imp_pos_emb_dim, dataroot=args.data_folder, args=args)
args.num_ans_candidates = train_dset.num_ans_candidates
model = build_regat(val_dset, args).to(device)
model = nn.DataParallel(model).cuda()
if args.checkpoint != "":
print("Loading weights from %s" % (args.checkpoint))
if not os.path.exists(args.checkpoint):
raise ValueError("No such checkpoint exists!")
checkpoint = torch.load(args.checkpoint)
state_dict = checkpoint.get('model_state', checkpoint)
matched_state_dict = {}
unexpected_keys = set()
missing_keys = set()
for name, param in model.named_parameters():
missing_keys.add(name)
for key, data in state_dict.items():
if key in missing_keys:
matched_state_dict[key] = data
missing_keys.remove(key)
else:
unexpected_keys.add(key)
print("Unexpected_keys:", list(unexpected_keys))
print("Missing_keys:", list(missing_keys))
model.load_state_dict(matched_state_dict, strict=False)
# use train & val splits to optimize, only available for vqa, not vqa_cp
train_loader = DataLoader(train_dset, batch_size, shuffle=True,
num_workers=args.num_workers, collate_fn=trim_collate)
eval_loader = DataLoader(test_dset, batch_size, shuffle=False,
num_workers=args.num_workers, collate_fn=trim_collate)
test_loader = DataLoader(test_dset, batch_size, shuffle=False,
num_workers=args.num_workers, collate_fn=trim_collate)
output_meta_folder = join(args.output, "mmrgl_%s" % args.relation_type)
utils.create_dir(output_meta_folder)
args.output = output_meta_folder+"/%s_%s_%s_%d" % (
fusion_methods, args.relation_type,
args.dataset, args.seed)
if exists(args.output) and os.listdir(args.output):
raise ValueError("Output directory ({}) already exists and is not "
"empty.".format(args.output))
utils.create_dir(args.output)
with open(join(args.output, 'hps.json'), 'w') as writer:
json.dump(vars(args), writer, indent=4)
logger = utils.Logger(join(args.output, 'log.txt'))
if not args.dryrun:
relation = args.relation_type
name = 'MMRGL_on_' + args.dataset + '_' + relation + '_' + str(args.nongt_dim)
wandb.init(project='Medical-CXR-VQA', config=args, name = name, allow_val_change=True)
# wandb.config.update(args, )
args = wandb.config
if not args.dryrun:
wandb.watch(model)
if args.mode == 'train':
train(model, train_loader, eval_loader, args, train_dset, wandb, device)
eval_score, bound, entropy, eval_score2, _ = evaluate(
model, test_loader, args.data_folder, device, args, val_dset, wandb, best=0)