-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
242 lines (187 loc) · 9.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import sys
import os
currentUrl = os.path.dirname(__file__)
parentUrl = os.path.abspath(os.path.join(currentUrl, os.pardir))
sys.path.append(parentUrl)
import shutil
import argparse
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from model.cpm_limb import CPMHandLimb
import dataset
from src.utils import set_logger, update_lr, get_pck_with_sigma, get_pred_coordinates, save_images, save_limb_images
from src import loss
# *********************** Parameter ***********************
parser = argparse.ArgumentParser()
parser.add_argument('config_file', help='config file for the experiment')
args = parser.parse_args()
configs = json.load(open('configs/' + args.config_file))
target_sigma_list = [0.04, 0.06, 0.08, 0.1, 0.12]
select_sigma = 0.1
model_name = 'EXP_' + configs["name"]
save_dir = os.path.join(model_name, 'checkpoint/')
test_pck_dir = os.path.join(model_name, 'test')
os.makedirs(save_dir, exist_ok=True)
os.makedirs(test_pck_dir, exist_ok=True)
shutil.copy('configs/' + args.config_file, model_name)
# training parameters ****************************
data_root = configs["data_root"]
learning_rate = configs["learning_rate"]
lr_decay_epoch = configs["lr_decay_epoch"]
batch_size = configs["batch_size"]
epochs = configs["epochs"]
weight_decay_epo = configs["weight_decay"]
weight_decay_ratio = configs["w_decay_ratio"]
weight_init = configs["weight"]
if "weight_g61" in configs:
weight_g61 = configs["weight_g61"]
else:
weight_g61 = 0.0
# data parameters ****************************
lshc = configs["limbc"]
group = configs["group"]
device_ids = configs["device"] # multi-GPU
torch.cuda.set_device(device_ids[0])
cuda = torch.cuda.is_available()
logger = set_logger(os.path.join(model_name, 'train.log'))
logger.info("************** Experiment Name: {} **************".format(model_name))
# ******************** build model ********************
logger.info("Create Model ...")
model = CPMHandLimb(outc=21, lshc=lshc, pretrained=True)
if cuda:
model = model.cuda(device_ids[0])
model = nn.DataParallel(model, device_ids=device_ids)
# ******************** data preparation ********************
my_dataset = getattr(dataset, configs["dataset"])
train_data = my_dataset(data_root=data_root, mode='train', group=group)
valid_data = my_dataset(data_root=data_root, mode='valid', group=group)
test_data = my_dataset(data_root=data_root, mode='test', group=group)
logger.info('Total images in training data is {}'.format(len(train_data)))
logger.info('Total images in validation data is {}'.format(len(valid_data)))
logger.info('Total images in testing data is {}'.format(len(test_data)))
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
# ******************** ********************
optimizer = optim.Adam(params=model.parameters(), lr=learning_rate)
def train():
logger.info('\nStart training ===========================================>')
best_epo = -1
max_pck = -1
cur_lr = learning_rate
cur_weight = weight_init
logger.info('Initial learning Rate: {}'.format(learning_rate))
for epoch in range(1, epochs + 1):
logger.info('Epoch[{}/{}] ==============>'.format(epoch, epochs))
model.train()
train_cm_loss = []
train_lm_loss = []
# *************** Limb weight decay ***************
# Since our limb representation is an intermediate product,
# we don't need to get a very precise result after several epochs
# Thus we decay the weight of limb loss after several epochs
if weight_decay_epo > 0 and epoch % weight_decay_epo == 0:
cur_weight = cur_weight * weight_decay_ratio
logger.info('[Weight Decay] Current Weight [{}]'.format(cur_weight))
for step, (img, cm_target, limb_target, img_name, w, h) in enumerate(train_loader):
# *************** target prepare ***************
limb_target = torch.stack([limb_target] * 3, dim=1) # size:(bz,3,C,46,46)
cm_target = torch.stack([cm_target] * 3, dim=1) # size:(bz,3,21,46,46)
if cuda:
img = img.cuda()
limb_target = limb_target.cuda()
cm_target = cm_target.cuda()
optimizer.zero_grad()
limb_pred, cm_pred = model(img)
# limb_pred (FloatTensor.cuda) size:(bz,3,C,46,46) after sigmoid
# cm_pred (FloatTensor.cuda) size:(bz,3,21,46,46)
# *************** calculate loss ***************
if lshc == 1: # For G1 only
limb_loss = loss.ce_loss(limb_pred, limb_target)
else: # For G1 & 6
g1_loss = loss.ce_loss(limb_pred[:, :, 0, ...], limb_target[:, :, 0, ...])
g6_loss = loss.ce_loss(limb_pred[:, :, 1:, ...], limb_target[:, :, 1:, ...])
limb_loss = g1_loss + weight_g61 * g6_loss
cm_loss = loss.sum_mse_loss(cm_pred, cm_target) # keypoint confidence map loss
total_loss = cur_weight * limb_loss + cm_loss
total_loss.backward()
optimizer.step()
train_cm_loss.append(cm_loss.item())
train_lm_loss.append(limb_loss.item())
if step % 50 == 0:
logger.info('STEP: {} LM LOSS {}'.format(step, limb_loss.item()))
logger.info(' CM LOSS {}'.format(cm_loss.item()))
# *************** save sample image after one epoch ***************
save_images(cm_target[:, -1, ...].cpu(), cm_pred[:, -1, ...].cpu(),
epoch, img_name, save_dir)
save_limb_images(limb_target[:, -1, ...].cpu(), limb_pred[:, -1, ...].cpu(),
epoch, img_name, save_dir)
# *************** eval model after one epoch ***************
eval_loss, cur_pck = eval(epoch, mode='valid')
logger.info('EPOCH {} VALID PCK {}'.format(epoch, cur_pck))
logger.info('EPOCH {} TRAIN_CM_LOSS {}'.format(epoch, sum(train_cm_loss) / len(train_cm_loss)))
logger.info('EPOCH {} TRAIN_LM_LOSS {}'.format(epoch, sum(train_lm_loss) / len(train_lm_loss)))
logger.info('EPOCH {} VALID_LOSS {}'.format(epoch, eval_loss))
# *************** save current model and best model ***************
if cur_pck > max_pck:
torch.save(model.state_dict(), os.path.join(save_dir, 'best_model.pth'))
best_epo = epoch
max_pck = cur_pck
logger.info('Current Best EPOCH is : {}, PCK is : {}\n**************\n'.format(best_epo, max_pck))
# save current model
torch.save(model.state_dict(), os.path.join(save_dir, 'final_epoch.pth'))
# *************** update learning rate ***************
if epoch % lr_decay_epoch == 0:
logger.info("Learning Rate Decay ...")
cur_lr /= 2
update_lr(optimizer, cur_lr)
logger.info('Train Done! ')
logger.info('Best epoch is {}'.format(best_epo))
logger.info('Best Valid PCK is {}'.format(max_pck))
def eval(epoch, mode='valid'):
if mode is 'valid':
loader = valid_loader
gt_labels = valid_data.all_labels
else:
loader = test_loader
gt_labels = test_data.all_labels
with torch.no_grad():
all_pred_labels = {} # save predict results
eval_loss = []
model.eval()
for step, (img, cm_target, limb_target, img_name, w, h) in enumerate(loader):
if cuda:
img = img.cuda()
_, cm_pred = model(img)
# limb_pred (FloatTensor.cuda) size:(bz,3,C,46,46)
# cm_pred (FloatTensor.cuda) size:(bz,3,21,46,46)
all_pred_labels = get_pred_coordinates(cm_pred[:, -1, ...].cpu(),
img_name, w, h, all_pred_labels)
loss_final = loss.sum_mse_loss(cm_pred[:, -1, ...].cpu(), cm_target)
eval_loss.append(loss_final)
# ******** save predict labels for valid/test data ********
if mode is 'valid':
pred_save_dir = os.path.join(save_dir, 'e' + str(epoch) + '_val_pred.json')
else:
pred_save_dir = os.path.join(test_pck_dir, 'test_pred.json')
json.dump(all_pred_labels, open(pred_save_dir, 'w'), sort_keys=True, indent=4)
# ************* calculate and save PCKs ************
pck_dict = get_pck_with_sigma(all_pred_labels, gt_labels, target_sigma_list)
if mode is 'valid':
pck_save_dir = os.path.join(save_dir, 'e' + str(epoch) + '_pck.json')
else:
pck_save_dir = os.path.join(test_pck_dir, 'pck.json')
json.dump(pck_dict, open(pck_save_dir, 'w'), sort_keys=True, indent=4)
select_pck = pck_dict[select_sigma]
eval_loss = sum(eval_loss)/len(eval_loss)
return eval_loss, select_pck
train()
logger.info('\nTESTING ============================>')
logger.info('Load Trained model !!!')
state_dict = torch.load(os.path.join(save_dir, 'best_model.pth'))
model.load_state_dict(state_dict)
eval(0, mode='test')
logger.info('Done!')