-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathgradio_app.py
77 lines (70 loc) · 3.31 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import argparse
from typing import Dict, List
from gdino import GroundingDINOAPIWrapper, visualize
import gradio as gr
import numpy as np
import cv2
def arg_parse():
parser = argparse.ArgumentParser(description="Gradio Demo for T-Rex2")
parser.add_argument(
"--token",
type=str,
help="This token is only for gradio space. Please do not take it away for your own purpose!",
)
args = parser.parse_args()
return args
def resize_image_with_aspect_ratio(image: np.ndarray, min_size: int = 800, max_size: int = 1333) -> np.ndarray:
h, w = image.shape[:2]
aspect_ratio = w / h
# Determine the scaling factor based on the constraints
if h < w:
new_height = min_size
new_width = int(new_height * aspect_ratio)
if new_width > max_size:
new_width = max_size
new_height = int(new_width / aspect_ratio)
else:
new_width = min_size
new_height = int(new_width / aspect_ratio)
if new_height > max_size:
new_height = max_size
new_width = int(new_height * aspect_ratio)
# Resize the image
resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return resized_image
def inference(image, prompt: str, return_mask: bool = False, return_score: bool = False) -> gr.Image:
# shrink image first to save computation
if return_mask:
image = resize_image_with_aspect_ratio(image, min_size=600, max_size=1000)
prompts = dict(image=image, prompt=prompt)
results = gdino.inference(prompts, return_mask=return_mask)
image_pil = visualize(image, results, return_mask=return_mask, draw_score=return_score)
return image_pil
args = arg_parse()
gdino = GroundingDINOAPIWrapper(args.token)
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image")
with gr.Column():
output_image = gr.Image(label="Output Image")
with gr.Row():
return_mask = gr.Checkbox(label="Return Mask")
return_score = gr.Checkbox(label="Return Score")
prompt = gr.Textbox(label="Prompt", placeholder="e.g., person.pigeon.tree")
run = gr.Button(value="Run")
with gr.Row():
gr.Examples(
examples=[
['asset/demo.jpg', 'person . pigeon . tree'],
['asset/demo2.jpeg', 'wireless walkie-talkie . life jacket . atlantic cod . man . vehicle . accessory . cell phone .'],
['asset/demo3.jpeg', 'wine rack . bottle . basket'],
['asset/demo4.jpeg', 'Mosque. golden dome. smaller domes. minarets. arched windows. white facade. cars. electrical lines. streetlights. trees. pedestrians. blue sky. shadows'],
['asset/demo5.jpeg', 'stately building. columns. sculptures. Spanish flag. clouds. blue sky. street. taxis. van. city bus. traffic lights. street lamps. road markings. pedestrians. sidewalk. traffic sign. palm trees']
],
inputs=[input_image, prompt],
)
run.click(inference, inputs=[input_image, prompt, return_mask, return_score], outputs=output_image)
demo.launch(debug=True)