-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathCombineModel_jt.py
121 lines (98 loc) · 4.61 KB
/
CombineModel_jt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*- coding: utf-8 -*-
import numpy as np
import cv2
from models.AE_Model import AE_Model
from models.Combine_Model import InferenceModel
from options.AE_face import wholeOptions
from options.parts_combine import CombineOptions
import _thread as thread
import time
import scipy.ndimage as sn
import random
import jittor as jt
class CombineModel():
def __init__(self):
self.sketch_img = np.ones((512, 512, 3),dtype=np.float32)
self.generated = np.ones((512, 512, 3),dtype=np.uint8)*255
self.sample_Num = 15
self.inmodel=1
self.fakes = {}
self.mask = {}
self.vector_part = {}
self.shadow = {}
self.shadow_on = True
self.sex = 0
# model
if self.inmodel:
#models for face/eye1/eye2/nose/mouth
self.model = {'eye1':AE_Model(),
'eye2':AE_Model(),
'nose':AE_Model(),
'mouth':AE_Model(),
'': AE_Model()}
self.part = {'eye1':(108,156,128),
'eye2':(255,156,128),
'nose':(182,232,160),
'mouth':(169,301,192),
'':(0,0,512)}
self.opt = wholeOptions().parse(save=False)
for key in self.model.keys():
# print(key)
self.opt.partial = key
self.model[key].initialize(self.opt)
self.model[key].eval()
self.mask[key] = cv2.cvtColor(cv2.imread('heat/' + key + '.jpg'), cv2.COLOR_RGB2GRAY).astype(np.float) / 255
self.mask[key] = np.expand_dims(self.mask[key], axis=2)
# print(key,'mask',self.mask[key].shape, self.mask[key].min())
#for input and refine weight
self.part_weight = {'eye1': 1,
'eye2': 1,
'nose': 1,
'mouth': 1,
'': 1}
opt1 = CombineOptions().parse(save=False)
opt1.nThreads = 1 # test code only supports nThreads = 1
opt1.batchSize = 1 # test code only supports batchSize = 1
self.combine_model = InferenceModel()
self.combine_model.initialize(opt1)
self.random_ = random.randint(0, self.model[''].feature_list[self.sex].shape[0])
def predict_shadow(self, sketch_mat):
width = 512
# sketch = (self.sketch_img*255).astype(np.uint8)
if self.inmodel:
fake = {}
shadow = {}
vector_part = {}
idx = 0
for key in self.model.keys():
loc = self.part[key]
sketch_part = sketch_mat[loc[1]:loc[1]+loc[2],loc[0]:loc[0]+loc[2],:]
if key == '' :
for key_p in self.model.keys():
if key_p!= '':
loc_p = self.part[key_p]
sketch_part[loc_p[1]:loc_p[1]+loc_p[2],loc_p[0]:loc_p[0]+loc_p[2],:] = 255
shadow_, vector_part[key] = self.model[key].get_inter(sketch_part[:, :, 0],
self.sample_Num,
w_c = self.part_weight[key],
sex=self.sex)
#shadow_ = shadow_[loc[1]:loc[1] + loc[2], loc[0]:loc[0] + loc[2], :]
if key == '':
for key_p in self.model.keys():
if key_p != '':
loc_p = self.part[key_p]
shadow_[loc_p[1]:loc_p[1] + loc_p[2], loc_p[0]:loc_p[0] + loc_p[2], :] = 255 - (
255 - shadow_[loc_p[1]:loc_p[1] + loc_p[2], loc_p[0]:loc_p[0] + loc_p[2], :]) * (1 - (
1 - self.mask[key_p]) * 0.2)
self.shadow[key] = np.ones((width, width, 1), dtype=np.uint8) * 255
self.shadow[key][loc[1]:loc[1] + loc[2], loc[0]:loc[0] + loc[2], :] = 255 - (255 - shadow_) * (1 - self.mask[key])
idx = idx+1
jt.gc()
else :
fake = np.ones_like( sketch ) * 255
# self.fakes = fake
self.vector_part = vector_part
self.shadow = shadow
#print(vector_part.keys())
self.generated = self.combine_model.inference(vector_part)
jt.gc()