-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12_turnover_nestedness_plants.R
248 lines (194 loc) · 8.39 KB
/
12_turnover_nestedness_plants.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
library(vegan)
library(plyr)
library(betapart)
library(foreach)
################################################################################
filepath = "E:/hyperspec_clean/clean/"
bd_plt = read.csv2(paste0(filepath, "plantscom_sorted.csv"))
bd_plt_smll = bd_plt[,c(1,7:67)]
bd_plt_smll = bd_plt_smll[,c(2,1,3:62)]
bd_plt_smll$type = paste(bd_plt_smll$clade, bd_plt_smll$species, sep = "_")
bd_plt_smll = bd_plt_smll[order(bd_plt_smll$clade),]
names = bd_plt_smll$type
bd_plt_trns <- data.frame(t(bd_plt_smll[,c(3:62)]))
colnames(bd_plt_trns) = names
################################################################################
##### calc NMDS for each animal taxon
###
# asterids
asterids = bd_plt_trns[,c(1:317)]
any(is.na(asterids))
# presence absence data
asterids_pa = as.data.frame(ifelse(asterids == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
asterids_pairs = beta.pair(asterids_pa, index.family = "jaccard")
tst = as.matrix(asterids_pairs[[1]])
asterids_cln = foreach(i = seq(asterids_pairs)) %do% {
as.matrix(asterids_pairs[[i]])
}
asterids_MDS = foreach(i = seq(asterids_cln), .combine = "cbind") %do% {
scores(metaMDS(asterids_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(asterids_MDS) = c("asterids_jtu_NMDS1", "asterids_jtu_NMDS2",
"asterids_jne_NMDS1", "asterids_jne_NMDS2",
"asterids_jac_NMDS1", "asterids_jac_NMDS2")
asterids_MDS = as.data.frame(asterids_MDS)
asterids_MDS$plotID = rownames(asterids_MDS)
###
# ferns
ferns = bd_plt_trns[,c(318:395)]
any(is.na(ferns))
# presence absence data
ferns_pa = as.data.frame(ifelse(ferns == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
ferns_pairs = beta.pair(ferns_pa, index.family = "jaccard")
tst = as.matrix(ferns_pairs[[1]])
ferns_cln = foreach(i = seq(ferns_pairs)) %do% {
as.matrix(ferns_pairs[[i]])[-c(2,4,7,40:45,51:55,58,60),-c(2,4,7,40:45,51:55,58,60)]
}
ferns_MDS = foreach(i = seq(ferns_cln), .combine = "cbind") %do% {
scores(metaMDS(ferns_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(ferns_MDS) = c("ferns_jtu_NMDS1", "ferns_jtu_NMDS2",
"ferns_jne_NMDS1", "ferns_jne_NMDS2",
"ferns_jac_NMDS1", "ferns_jac_NMDS2")
ferns_MDS = as.data.frame(ferns_MDS)
ferns_MDS$plotID = rownames(ferns_MDS)
plnts_MDS_df = merge(asterids_MDS, ferns_MDS, all.x = TRUE)
###
# magnoliids
magnoliids = bd_plt_trns[,c(396:405)]
any(is.na(magnoliids))
# presence absence data
magnoliids_pa = as.data.frame(ifelse(magnoliids == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
magnoliids_pairs = beta.pair(magnoliids_pa, index.family = "jaccard")
#tst = as.matrix(magnoliids_pairs[[1]])
magnoliids_cln = foreach(i = seq(magnoliids_pairs)) %do% {
as.matrix(magnoliids_pairs[[i]])[-c(1:4,6:10,27,30,36:38,40:45,47,51:55,57:60),-c(1:4,6:10,27,30,36:38,40:45,47,51:55,57:60)]
}
magnoliids_MDS = foreach(i = seq(magnoliids_cln), .combine = "cbind") %do% {
scores(metaMDS(magnoliids_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(magnoliids_MDS) = c("magnoliids_jtu_NMDS1", "magnoliids_jtu_NMDS2",
"magnoliids_jne_NMDS1", "magnoliids_jne_NMDS2",
"magnoliids_jac_NMDS1", "magnoliids_jac_NMDS2")
magnoliids_MDS = as.data.frame(magnoliids_MDS)
magnoliids_MDS$plotID = rownames(magnoliids_MDS)
plnts_MDS_df = merge(plnts_MDS_df, magnoliids_MDS, all.x = TRUE)
###
# monocots
monocots = bd_plt_trns[,c(406:609)]
any(is.na(monocots))
# presence absence data
monocots_pa = as.data.frame(ifelse(monocots == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
monocots_pairs = beta.pair(monocots_pa, index.family = "jaccard")
tst = as.matrix(monocots_pairs[[1]])
monocots_cln = foreach(i = seq(monocots_pairs)) %do% {
as.matrix(monocots_pairs[[i]])
}
monocots_MDS = foreach(i = seq(monocots_cln), .combine = "cbind") %do% {
scores(metaMDS(monocots_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(monocots_MDS) = c("monocots_jtu_NMDS1", "monocots_jtu_NMDS2",
"monocots_jne_NMDS1", "monocots_jne_NMDS2",
"monocots_jac_NMDS1", "monocots_jac_NMDS2")
monocots_MDS = as.data.frame(monocots_MDS)
monocots_MDS$plotID = rownames(monocots_MDS)
plnts_MDS_df = merge(plnts_MDS_df, monocots_MDS, all.x = TRUE)
###
# mosses
mosses = bd_plt_trns[,c(610:625)]
any(is.na(mosses))
# presence absence data
mosses_pa = as.data.frame(ifelse(mosses == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
mosses_pairs = beta.pair(mosses_pa, index.family = "jaccard")
tst = as.matrix(mosses_pairs[[1]])
mosses_cln = foreach(i = seq(mosses_pairs)) %do% {
as.matrix(mosses_pairs[[i]])[-c(1:5,9,11:25,31:35,38:40,45:60),-c(1:5,9,11:25,31:35,38:40,45:60)]
}
mosses_MDS = foreach(i = seq(mosses_cln), .combine = "cbind") %do% {
scores(metaMDS(mosses_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(mosses_MDS) = c("mosses_jtu_NMDS1", "mosses_jtu_NMDS2",
"mosses_jne_NMDS1", "mosses_jne_NMDS2",
"mosses_jac_NMDS1", "mosses_jac_NMDS2")
mosses_MDS = as.data.frame(mosses_MDS)
mosses_MDS$plotID = rownames(mosses_MDS)
plnts_MDS_df = merge(plnts_MDS_df, mosses_MDS, all.x = TRUE)
###
# eudicots
eudicots = bd_plt_trns[,c(626:678)]
any(is.na(eudicots))
# presence absence data
eudicots_pa = as.data.frame(ifelse(eudicots == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
eudicots_pairs = beta.pair(eudicots_pa, index.family = "jaccard")
tst = as.matrix(eudicots_pairs[[1]])
eudicots_cln = foreach(i = seq(eudicots_pairs)) %do% {
as.matrix(eudicots_pairs[[i]])[-c(7,9,11:12,16,18,21,23,25,43,45),-c(7,9,11:12,16,18,21,23,25,43,45)]
}
eudicots_MDS = foreach(i = seq(eudicots_cln), .combine = "cbind") %do% {
scores(metaMDS(eudicots_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(eudicots_MDS) = c("eudicots_jtu_NMDS1", "eudicots_jtu_NMDS2",
"eudicots_jne_NMDS1", "eudicots_jne_NMDS2",
"eudicots_jac_NMDS1", "eudicots_jac_NMDS2")
eudicots_MDS = as.data.frame(eudicots_MDS)
eudicots_MDS$plotID = rownames(eudicots_MDS)
plnts_MDS_df = merge(plnts_MDS_df, eudicots_MDS, all.x = TRUE)
###
# conifers
conifers = bd_plt_trns[,c(679:687)]
any(is.na(conifers))
# presence absence data
conifers_pa = as.data.frame(ifelse(conifers == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
conifers_pairs = beta.pair(conifers_pa, index.family = "jaccard")
#tst = as.matrix(conifers_pairs[[1]])
conifers_cln = foreach(i = seq(conifers_pairs)) %do% {
as.matrix(conifers_pairs[[i]])[-c(1:10,12:14,21,39:45,47,49:60),-c(1:10,12:14,21,39:45,47,49:60)]
}
conifers_MDS = foreach(i = seq(conifers_cln), .combine = "cbind") %do% {
scores(metaMDS(conifers_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(conifers_MDS) = c("conifers_jtu_NMDS1", "conifers_jtu_NMDS2",
"conifers_jne_NMDS1", "conifers_jne_NMDS2",
"conifers_jac_NMDS1", "conifers_jac_NMDS2")
conifers_MDS = as.data.frame(conifers_MDS)
conifers_MDS$plotID = rownames(conifers_MDS)
plnts_MDS_df = merge(plnts_MDS_df, conifers_MDS, all.x = TRUE)
###
# rosids
rosids = bd_plt_trns[,c(688:992)]
any(is.na(rosids))
# presence absence data
rosids_pa = as.data.frame(ifelse(rosids == 0, 0, 1))
# calc turnover and nestedness with betaPART::beta.pair
rosids_pairs = beta.pair(rosids_pa, index.family = "jaccard")
#tst = as.matrix(rosids_pairs[[1]])
rosids_cln = foreach(i = seq(rosids_pairs)) %do% {
as.matrix(rosids_pairs[[i]])[-7,-7]
}
rosids_MDS = foreach(i = seq(rosids_cln), .combine = "cbind") %do% {
scores(metaMDS(rosids_cln[[i]], distance = "jaccard"),
choices = c(1,2), display = "sites")
}
colnames(rosids_MDS) = c("rosids_jtu_NMDS1", "rosids_jtu_NMDS2",
"rosids_jne_NMDS1", "rosids_jne_NMDS2",
"rosids_jac_NMDS1", "rosids_jac_NMDS2")
rosids_MDS = as.data.frame(rosids_MDS)
rosids_MDS$plotID = rownames(rosids_MDS)
plnts_MDS_df = merge(plnts_MDS_df, rosids_MDS, all.y = TRUE)
write.csv2(plnts_MDS_df,
paste(filepath, "taxa_plants_TO_NE_AC_NMDS_sites.csv"),
row.names = FALSE)