-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSim_Struct_Cong.thy
1646 lines (1569 loc) · 144 KB
/
Sim_Struct_Cong.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
theory Sim_Struct_Cong
imports Simulation
begin
lemma partition_list_left:
assumes "xs@ys=xs'@y#ys'"
and "y mem xs"
and "distinct(xs@ys)"
obtains zs where "xs = xs'@y#zs" and "ys'=zs@ys"
using assms
by(force simp add: append_eq_append_conv2 append_eq_Cons_conv)
lemma partition_list_right:
assumes "xs@ys=xs'@y#ys'"
and "y mem ys"
and "distinct(xs@ys)"
obtains zs where "xs' = xs@zs" and "ys=zs@y#ys'"
using assms
by(force simp add: append_eq_append_conv2 append_eq_Cons_conv)
context env begin
lemma res_comm:
fixes \<Psi> :: 'b
and x :: name
and y :: name
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
and P :: "('a, 'b, 'c) psi"
assumes "x \<sharp> \<Psi>"
and "y \<sharp> \<Psi>"
and "eqvt Rel"
and R1: "\<And>\<Psi>' Q. (\<Psi>', Q, Q) \<in> Rel"
and R2: "\<And>\<Psi>' a b Q. \<lbrakk>a \<sharp> \<Psi>'; b \<sharp> \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>a\<rparr>(\<lparr>\<nu>b\<rparr>Q), \<lparr>\<nu>b\<rparr>(\<lparr>\<nu>a\<rparr>Q)) \<in> Rel"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<leadsto>[Rel] \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)"
proof(case_tac "x=y")
assume "x = y"
thus ?thesis using R1
by(force intro: reflexive)
next
assume "x \<noteq> y"
note `eqvt Rel`
moreover from `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` have "[x, y] \<sharp>* \<Psi>" by(simp add: fresh_star_def)
moreover have "[x, y] \<sharp>* \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P)" by(simp add: abs_fresh)
moreover have "[x, y] \<sharp>* \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)" by(simp add: abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_chain_fresh[where C="(x, y)"])
case(c_sim \<pi> \<alpha> P')
from `bn \<alpha> \<sharp>* (x, y)` `bn \<alpha> \<sharp>* (\<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P))` have "x \<sharp> bn \<alpha>" and "y \<sharp> bn \<alpha>" and "bn \<alpha> \<sharp>* P" by simp+
from `[x, y] \<sharp>* \<alpha>` have "x \<sharp> \<alpha>" and "y \<sharp> \<alpha>" by simp+
from `[x, y] \<sharp>* P'` have "x \<sharp> P'" and "y \<sharp> P'" by simp+
from `bn \<alpha> \<sharp>* P` `x \<sharp> \<alpha>` have "bn \<alpha> \<sharp>* \<lparr>\<nu>x\<rparr>P" by(simp add: abs_fresh)
with `\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P) \<longmapsto>\<pi> @ \<alpha> \<prec> P'` `y \<sharp> \<Psi>` `y \<sharp> \<alpha>` `y \<sharp> P'` `bn \<alpha> \<sharp>* \<Psi>`
show ?case using `bn \<alpha> \<sharp>* subject \<alpha>` `x \<sharp> \<alpha>` `x \<sharp> P'` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P` `bn \<alpha> \<sharp>* subject \<alpha>` `y \<sharp> \<alpha>`
proof(induct rule: res_cases')
case(c_open M \<pi>' yvec1 yvec2 y' N P')
from `yvec1 \<sharp>* yvec2` `distinct yvec1` `distinct yvec2` have "distinct(yvec1@yvec2)" by auto
from `x \<sharp> M\<lparr>\<nu>*(yvec1 @ y' # yvec2)\<rparr>\<langle>N\<rangle>` have "x \<sharp> M" and "x \<sharp> yvec1" and "x \<noteq> y'" and "x \<sharp> yvec2" and "x \<sharp> N"
by simp+
from `y \<sharp> M\<lparr>\<nu>*(yvec1 @ y' # yvec2)\<rparr>\<langle>N\<rangle>` have "y \<sharp> M" and "y \<sharp> yvec1" and "y \<sharp> yvec2"
by simp+
from `\<Psi> \<rhd> ([(y, y')] \<bullet> \<lparr>\<nu>x\<rparr>P) \<longmapsto>Some([(y, y')] \<bullet> \<pi>') @ M\<lparr>\<nu>*(yvec1@yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'` `x \<noteq> y` `x \<noteq> y'`
have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>([(y, y')] \<bullet> P) \<longmapsto>Some([(y, y')] \<bullet> \<pi>') @ M\<lparr>\<nu>*(yvec1@yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" by(simp add: eqvts)
moreover note `x \<sharp> \<Psi>`
moreover from `x \<sharp> N` `x \<sharp> yvec1` `x \<sharp> yvec2` `x \<sharp> M` have "x \<sharp> M\<lparr>\<nu>*(yvec1@yvec2)\<rparr>\<langle>N\<rangle>" by simp
moreover note `x \<sharp> P'`
moreover from `yvec1 \<sharp>* \<Psi>` `yvec2 \<sharp>* \<Psi>` have "bn(M\<lparr>\<nu>*(yvec1@yvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* \<Psi>" by simp
moreover from `yvec1 \<sharp>* \<lparr>\<nu>x\<rparr>P` `yvec2 \<sharp>* \<lparr>\<nu>x\<rparr>P` `y \<sharp> yvec1` `y' \<sharp> yvec1` `y \<sharp> yvec2` `y' \<sharp> yvec2` `x \<sharp> yvec1` `x \<sharp> yvec2`
have "bn(M\<lparr>\<nu>*(yvec1@yvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* ([(y, y')] \<bullet> P)" by simp
moreover from `yvec1 \<sharp>* M` `yvec2 \<sharp>* M` have "bn(M\<lparr>\<nu>*(yvec1 @ yvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* subject(M\<lparr>\<nu>*(yvec1 @ yvec2)\<rparr>\<langle>N\<rangle>)"
by simp
moreover have "bn(M\<lparr>\<nu>*(yvec1 @ yvec2)\<rparr>\<langle>N\<rangle>) = yvec1@yvec2" by simp
moreover have "subject(M\<lparr>\<nu>*(yvec1 @ yvec2)\<rparr>\<langle>N\<rangle>) = Some M" by simp
moreover have "object(M\<lparr>\<nu>*(yvec1 @ yvec2)\<rparr>\<langle>N\<rangle>) = Some N" by simp
ultimately show ?case
proof(induct rule: res_cases')
case(c_open M' \<pi>'' xvec1 xvec2 x' N' P')
from `bn(M'\<lparr>\<nu>*(xvec1 @ x' # xvec2)\<rparr>\<langle>N'\<rangle>) = yvec1 @ yvec2` have "yvec1@yvec2 = xvec1@x'#xvec2" by simp
from `subject(M'\<lparr>\<nu>*(xvec1 @ x' # xvec2)\<rparr>\<langle>N'\<rangle>) = Some M` have "M = M'" by simp
from `object(M'\<lparr>\<nu>*(xvec1 @ x' # xvec2)\<rparr>\<langle>N'\<rangle>) = Some N` have "N = N'" by simp
from `x \<sharp> yvec1` `x \<sharp> yvec2` `y' \<sharp> yvec1` `y' \<sharp> yvec2` `y \<sharp> yvec1` `y \<sharp> yvec2`
have "x \<sharp> (yvec1@yvec2)" and "y \<sharp> (yvec1@yvec2)" and "y' \<sharp> (yvec1@yvec2)" by simp+
with `yvec1@yvec2 = xvec1@x'#xvec2`
have "x \<sharp> xvec1" and "x \<noteq> x'" and "x \<sharp> xvec2" and "y \<sharp> xvec1" and "y \<noteq> x'" and "y \<sharp> xvec2"
and "y' \<sharp> xvec1" and "x' \<noteq> y'" and "y' \<sharp> xvec2"
by auto
show ?case
proof(case_tac "x' mem yvec1")
assume "x' mem yvec1"
with `yvec1@yvec2 = xvec1@x'#xvec2` `distinct (yvec1@yvec2)`
obtain xvec2' where Eq1: "yvec1=xvec1@x'#xvec2'"
and Eq: "xvec2=xvec2'@yvec2"
by(rule_tac partition_list_left)
from `\<Psi> \<rhd> ([(x, x')] \<bullet> [(y, y')] \<bullet> P) \<longmapsto>Some ([(x, x')] \<bullet> \<pi>'') @ M'\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N'\<rangle> \<prec> P'` `y' \<in> supp N` `y' \<sharp> \<Psi>` `y' \<sharp> M` `y' \<sharp> xvec1` `y' \<sharp> xvec2` Eq `M=M'` `N = N'`
have "\<Psi> \<rhd> \<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P) \<longmapsto>Some(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> \<pi>'')) @ M'\<lparr>\<nu>*((xvec1@xvec2')@y'#yvec2)\<rparr>\<langle>N'\<rangle> \<prec> P'"
by(rule_tac Open) auto
then have "\<Psi> \<rhd> \<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P)) \<longmapsto>Some(\<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*(xvec1@x'#xvec2'@y'#yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'"
using `x' \<in> supp N'` `x' \<sharp> \<Psi>` `x' \<sharp> M'` `x' \<sharp> xvec1` `x' \<sharp> xvec2` `x' \<noteq> y'` Eq `M=M'` `N=N'`
by(rule_tac Open) auto
with `x' \<noteq> y'` `x \<noteq> y'` `x' \<sharp> [(y, y')] \<bullet> P`
have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y'\<rparr>([(y, y')] \<bullet> P)) \<longmapsto>Some(\<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*(xvec1@x'#xvec2'@y'#yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'"
by(subst alpha_res[where y=x']) (simp add: calc_atm eqvts abs_fresh)+
with Eq1 `y' \<sharp> \<lparr>\<nu>x\<rparr>P` `x \<noteq> y'` R1 show ?case
by(force simp add: alpha_res abs_fresh)
next
assume "\<not>x' mem yvec1"
hence "x' \<sharp> yvec1" by(simp add: fresh_def)
from `\<not>x' mem yvec1` `yvec1@yvec2 = xvec1@x'#xvec2`
have "x' mem yvec2"
by(force simp add: append_eq_append_conv2 append_eq_Cons_conv
fresh_list_append fresh_list_cons)
with `yvec1@yvec2 = xvec1@x'#xvec2` `distinct (yvec1@yvec2)`
obtain xvec2' where Eq: "xvec1=yvec1@xvec2'"
and Eq1: "yvec2=xvec2'@x'#xvec2"
by(rule_tac partition_list_right)
from `\<Psi> \<rhd> ([(x, x')] \<bullet> [(y, y')] \<bullet> P) \<longmapsto>Some([(x, x')] \<bullet> \<pi>'') @ M'\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N'\<rangle> \<prec> P'` `y' \<in> supp N` `y' \<sharp> \<Psi>` `y' \<sharp> M` `y' \<sharp> xvec1` `y' \<sharp> xvec2` Eq `M=M'` `N = N'`
have "\<Psi> \<rhd> \<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P) \<longmapsto>Some(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> \<pi>'')) @ M'\<lparr>\<nu>*(yvec1@y'#xvec2'@xvec2)\<rparr>\<langle>N'\<rangle> \<prec> P'"
by(rule_tac Open) (assumption | simp)+
then have "\<Psi> \<rhd> \<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> [(y, y')] \<bullet> P)) \<longmapsto>Some(\<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*((yvec1@y'#xvec2')@x'#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'"
using `x' \<in> supp N'` `x' \<sharp> \<Psi>` `x' \<sharp> M'` `x' \<sharp> xvec1` `x' \<sharp> xvec2` `x' \<noteq> y'` Eq `M=M'` `N=N'`
by(rule_tac Open) auto
with `x' \<noteq> y'` `x \<noteq> y'` `x' \<sharp> [(y, y')] \<bullet> P`
have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y'\<rparr>([(y, y')] \<bullet> P)) \<longmapsto>Some(\<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y'\<rparr>([(x, x')] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*((yvec1@y'#xvec2')@x'#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'"
by(subst alpha_res[where y=x']) (simp add: calc_atm eqvts abs_fresh)+
with Eq1 `y' \<sharp> \<lparr>\<nu>x\<rparr>P` `x \<noteq> y'` R1 show ?case
by(force simp add: alpha_res abs_fresh)
qed
next
case(c_res \<pi>'' P')
from `Some ([(y, y')] \<bullet> \<pi>') = map_option (F_res x) \<pi>''`
obtain \<pi>''' where \<pi>'': "\<pi>'' = Some \<pi>'''"
by(induct \<pi>'') auto
from `\<Psi> \<rhd> ([(y, y')] \<bullet> P) \<longmapsto>\<pi>'' @ M\<lparr>\<nu>*(yvec1@yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'` `y' \<in> supp N` `y' \<sharp> \<Psi>` `y' \<sharp> M` `y' \<sharp> yvec1` `y' \<sharp> yvec2`
have "\<Psi> \<rhd> \<lparr>\<nu>y'\<rparr>([(y, y')] \<bullet> P) \<longmapsto>Some(\<lparr>\<nu>y'\<rparr>\<pi>''') @ M\<lparr>\<nu>*(yvec1@y'#yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'"
unfolding \<pi>''
by(rule_tac Open)
with `y' \<sharp> \<lparr>\<nu>x\<rparr>P` `x \<noteq> y'`have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>P \<longmapsto>Some(\<lparr>\<nu>y'\<rparr>\<pi>''') @ M\<lparr>\<nu>*(yvec1@y'#yvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" by(simp add: alpha_res abs_fresh)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<longmapsto>Some(\<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y'\<rparr>\<pi>''')) @ M\<lparr>\<nu>*(yvec1@y'#yvec2)\<rparr>\<langle>N\<rangle> \<prec> \<lparr>\<nu>x\<rparr>P'" using `x \<sharp> \<Psi>` `x \<sharp> M` `x \<sharp> yvec1` `x \<noteq> y'` `x \<sharp> yvec2` `x \<sharp> N`
by(drule_tac Scope) auto
moreover have "(\<Psi>, \<lparr>\<nu>x\<rparr>P', \<lparr>\<nu>x\<rparr>P') \<in> Rel" by(rule R1)
ultimately show ?case by blast
qed
next
case(c_res \<pi>' P')
from `x \<sharp> \<lparr>\<nu>y\<rparr>P'` `x \<noteq> y` have "x \<sharp> P'" by(simp add: abs_fresh)
with `\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'` `x \<sharp> \<Psi>` `x \<sharp> \<alpha>`
show ?case using `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P` `bn \<alpha> \<sharp>* subject \<alpha>` `y \<sharp> \<alpha>`
proof(induct rule: res_cases')
case(c_open M \<pi>'' xvec1 xvec2 x' N P')
from `y \<sharp> M\<lparr>\<nu>*(xvec1@x'#xvec2)\<rparr>\<langle>N\<rangle>` have "y \<noteq> x'" and "y \<sharp> M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N\<rangle>" by simp+
from `\<Psi> \<rhd> ([(x, x')] \<bullet> P) \<longmapsto>Some ([(x, x')] \<bullet> \<pi>'') @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'` `y \<sharp> \<Psi>` `y \<sharp> M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N\<rangle>`
have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>([(x, x')] \<bullet> P) \<longmapsto>Some (\<lparr>\<nu>y\<rparr>([(x, x')] \<bullet> \<pi>'')) @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N\<rangle> \<prec> \<lparr>\<nu>y\<rparr>P'"
by(drule_tac Scope) auto
hence "\<Psi> \<rhd> \<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y\<rparr>([(x, x')] \<bullet> P)) \<longmapsto>Some (\<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y\<rparr>([(x, x')] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*(xvec1@x'#xvec2)\<rparr>\<langle>N\<rangle> \<prec> \<lparr>\<nu>y\<rparr>P'"
using `x' \<in> supp N` `x' \<sharp> \<Psi>` `x' \<sharp> M` `x' \<sharp> xvec1` `x' \<sharp> xvec2`
by(rule Open)
with `y \<noteq> x'` `x \<noteq> y` `x' \<sharp> P` have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<longmapsto>Some (\<lparr>\<nu>x'\<rparr>(\<lparr>\<nu>y\<rparr>([(x, x')] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*(xvec1@x'#xvec2)\<rparr>\<langle>N\<rangle> \<prec> \<lparr>\<nu>y\<rparr>P'"
by(subst alpha_res[where y=x']) (simp add: abs_fresh eqvts calc_atm)+
moreover have "(\<Psi>, \<lparr>\<nu>y\<rparr>P', \<lparr>\<nu>y\<rparr>P') \<in> Rel" by(rule R1)
ultimately show ?case by blast
next
case(c_res \<pi>'' P')
from `\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'` `y \<sharp> \<Psi>` `y \<sharp> \<alpha>`
have "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>P \<longmapsto>map_option (F_res y) \<pi>'' @ \<alpha> \<prec> \<lparr>\<nu>y\<rparr>P'"
by(rule Scope)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<longmapsto>map_option (F_res x) (map_option (F_res y) \<pi>'') @ \<alpha> \<prec> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P')" using `x \<sharp> \<Psi>` `x \<sharp> \<alpha>`
by(rule Scope)
moreover from `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` have "(\<Psi>, \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P'), \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P')) \<in> Rel"
by(rule R2)
ultimately show ?case by blast
qed
qed
qed
qed
lemma par_assoc_left:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes "eqvt Rel"
and C1: "\<And>\<Psi>' S T U. (\<Psi>, (S \<parallel> T) \<parallel> U, S \<parallel> (T \<parallel> U)) \<in> Rel"
and C2: "\<And>xvec \<Psi>' S T U. \<lbrakk>xvec \<sharp>* \<Psi>'; xvec \<sharp>* S\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>*xvec\<rparr>((S \<parallel> T) \<parallel> U), S \<parallel> (\<lparr>\<nu>*xvec\<rparr>(T \<parallel> U))) \<in> Rel"
and C3: "\<And>xvec \<Psi>' S T U. \<lbrakk>xvec \<sharp>* \<Psi>'; xvec \<sharp>* U\<rbrakk> \<Longrightarrow> (\<Psi>', (\<lparr>\<nu>*xvec\<rparr>(S \<parallel> T)) \<parallel> U, \<lparr>\<nu>*xvec\<rparr>(S \<parallel> (T \<parallel> U))) \<in> Rel"
and C4: "\<And>\<Psi>' S T xvec. \<lbrakk>(\<Psi>', S, T) \<in> Rel; xvec \<sharp>* \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>*xvec\<rparr>S, \<lparr>\<nu>*xvec\<rparr>T) \<in> Rel"
shows "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<leadsto>[Rel] P \<parallel> (Q \<parallel> R)"
using `eqvt Rel`
proof(induct rule: simI[of _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> PQR)
from `bn \<alpha> \<sharp>* (P \<parallel> Q \<parallel> R)` have "bn \<alpha> \<sharp>* P" and "bn \<alpha> \<sharp>* Q" and "bn \<alpha> \<sharp>* R" by simp+
hence "bn \<alpha> \<sharp>* (Q \<parallel> R)" by simp
with `\<Psi> \<rhd> P \<parallel> (Q \<parallel> R) \<longmapsto>\<pi> @ \<alpha> \<prec> PQR` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P`
show ?case using `bn \<alpha> \<sharp>* subject \<alpha>`
proof(induct rule: par_cases[where C = "(\<Psi>, P, Q, R, \<alpha>)"])
case(c_par1 P' \<pi>' A\<^sub>Q\<^sub>R \<Psi>\<^sub>Q\<^sub>R)
from `A\<^sub>Q\<^sub>R \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "A\<^sub>Q\<^sub>R \<sharp>* Q" and "A\<^sub>Q\<^sub>R \<sharp>* R"
by simp+
with `extract_frame(Q \<parallel> R) = \<langle>A\<^sub>Q\<^sub>R, \<Psi>\<^sub>Q\<^sub>R\<rangle>` `distinct A\<^sub>Q\<^sub>R`
obtain A\<^sub>Q \<Psi>\<^sub>Q A\<^sub>R \<Psi>\<^sub>R where "A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R" and "\<Psi>\<^sub>Q\<^sub>R = \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R" and FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>R" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>Q"
by(rule_tac merge_frameE) (auto dest: extract_frame_fresh_chain)
from `A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R` `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>Q\<^sub>R \<sharp>* Q` `A\<^sub>Q\<^sub>R \<sharp>* \<alpha>`
have "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* P" and "A\<^sub>R \<sharp>* P" and "A\<^sub>Q \<sharp>* Q" and "A\<^sub>R \<sharp>* Q" and "A\<^sub>Q \<sharp>* \<alpha>" and "A\<^sub>R \<sharp>* \<alpha>"
by simp+
from `\<Psi> \<otimes> \<Psi>\<^sub>Q\<^sub>R \<rhd> P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'` `\<Psi>\<^sub>Q\<^sub>R = \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R` have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q \<rhd> P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'"
by(metis stat_eq_transition Associativity Commutativity Composition)
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto> append_at_end_prov_option \<pi>' A\<^sub>Q @ \<alpha> \<prec> (P' \<parallel> Q)" using FrQ `bn \<alpha> \<sharp>* Q` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* P` `A\<^sub>Q \<sharp>* \<alpha>`
by(rule_tac Par1) auto
hence "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>append_at_end_prov_option(append_at_end_prov_option \<pi>' A\<^sub>Q) A\<^sub>R @ \<alpha> \<prec> ((P' \<parallel> Q) \<parallel> R)" using FrR `bn \<alpha> \<sharp>* R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* \<alpha>`
by(rule_tac Par1) auto
moreover have "(\<Psi>, (P' \<parallel> Q) \<parallel> R, P' \<parallel> (Q \<parallel> R)) \<in> Rel" by(rule C1)
ultimately show ?case by blast
next
case(c_par2 QR \<pi>' A\<^sub>P \<Psi>\<^sub>P)
from `A\<^sub>P \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "A\<^sub>P \<sharp>* Q" and "A\<^sub>P \<sharp>* R" and "A\<^sub>P \<sharp>* \<alpha>"
by simp+
have FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" by fact
with `bn \<alpha> \<sharp>* P` `A\<^sub>P \<sharp>* \<alpha>` have "bn \<alpha> \<sharp>* \<Psi>\<^sub>P" by(auto dest: extract_frame_fresh_chain)
with `bn \<alpha> \<sharp>* \<Psi>` have "bn \<alpha> \<sharp>* (\<Psi> \<otimes> \<Psi>\<^sub>P)" by force
with `\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> Q \<parallel> R \<longmapsto>\<pi>' @ \<alpha> \<prec> QR`
show ?case using `bn \<alpha> \<sharp>* Q` `bn \<alpha> \<sharp>* R` `bn \<alpha> \<sharp>* subject \<alpha>` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* R`
proof(induct rule: par_cases_subject[where C = "(A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)"])
case(c_par1 \<pi>'' Q' A\<^sub>R \<Psi>\<^sub>R)
from `A\<^sub>R \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "A\<^sub>R \<sharp>* A\<^sub>P" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>"
by simp+
from `A\<^sub>P \<sharp>* R` `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>` `A\<^sub>R \<sharp>* A\<^sub>P` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(drule_tac extract_frame_fresh_chain) auto
from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>\<pi>'' @ \<alpha> \<prec> Q'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<rhd> Q \<longmapsto>\<pi>'' @ \<alpha> \<prec> Q'"
by(metis stat_eq_transition Associativity Commutativity Composition)
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>append_at_front_prov_option \<pi>'' A\<^sub>P @ \<alpha> \<prec> (P \<parallel> Q')"
using FrP `bn \<alpha> \<sharp>* P` `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* \<alpha>`
by(rule_tac Par2) (assumption | force)+
hence "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>append_at_end_prov_option(append_at_front_prov_option \<pi>'' A\<^sub>P) A\<^sub>R @ \<alpha> \<prec> ((P \<parallel> Q') \<parallel> R)"
using `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>` `bn \<alpha> \<sharp>* R` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* \<alpha>`
by(rule_tac Par1) (assumption | simp)+
moreover have "(\<Psi>, (P \<parallel> Q') \<parallel> R, P \<parallel> (Q' \<parallel> R)) \<in> Rel" by(rule C1)
ultimately show ?case by blast
next
case(c_par2 \<pi>'' R' A\<^sub>Q \<Psi>\<^sub>Q)
from `A\<^sub>Q \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* R" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>"
by simp+
have FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" by fact
from `A\<^sub>P \<sharp>* Q` FrQ `A\<^sub>Q \<sharp>* A\<^sub>P` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q"
by(drule_tac extract_frame_fresh_chain) auto
from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>\<pi>'' @ \<alpha> \<prec> R'`
have "\<Psi> \<otimes> (\<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q) \<rhd> R \<longmapsto>\<pi>'' @ \<alpha> \<prec> R'"
by(blast intro: stat_eq_transition Associativity)
moreover from FrP FrQ `A\<^sub>Q \<sharp>* A\<^sub>P` `A\<^sub>P \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>P`
have "extract_frame(P \<parallel> Q) = \<langle>(A\<^sub>P@A\<^sub>Q), \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q\<rangle> " by simp
moreover from `bn \<alpha> \<sharp>* P` `bn \<alpha> \<sharp>* Q` have "bn \<alpha> \<sharp>* (P \<parallel> Q)" by simp
moreover from `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` have "(A\<^sub>P@A\<^sub>Q) \<sharp>* \<Psi>" by simp
moreover from `A\<^sub>P \<sharp>* R` `A\<^sub>Q \<sharp>* R` have "(A\<^sub>P@A\<^sub>Q) \<sharp>* R" by simp
moreover from `A\<^sub>P \<sharp>* \<alpha>` `A\<^sub>Q \<sharp>* \<alpha>` have "(A\<^sub>P@A\<^sub>Q) \<sharp>* \<alpha>" by simp
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>append_at_front_prov_option \<pi>'' (A\<^sub>P@A\<^sub>Q) @ \<alpha> \<prec> ((P \<parallel> Q) \<parallel> R')"
by(rule Par2)
moreover have "(\<Psi>, (P \<parallel> Q) \<parallel> R', P \<parallel> (Q \<parallel> R')) \<in> Rel" by(rule C1)
ultimately show ?case by blast
next
case(c_comm1 \<Psi>\<^sub>R M N Q' A\<^sub>Q \<Psi>\<^sub>Q K xvec R' A\<^sub>R yvec zvec)
from `A\<^sub>Q \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)`
have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* Q" and "A\<^sub>Q \<sharp>* R" and "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>" by simp+
from `A\<^sub>R \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q" and "A\<^sub>R \<sharp>* R" and "A\<^sub>R \<sharp>* A\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>" by simp+
from `xvec \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "xvec \<sharp>* A\<^sub>P" and "xvec \<sharp>* P" and "xvec \<sharp>* Q" and "xvec \<sharp>* \<Psi>" by simp+
from `yvec \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "yvec \<sharp>* A\<^sub>P" and "yvec \<sharp>* P" and "yvec \<sharp>* Q" and "yvec \<sharp>* \<Psi>" by simp+
from `zvec \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "zvec \<sharp>* A\<^sub>P" and "zvec \<sharp>* P" and "zvec \<sharp>* Q" and "zvec \<sharp>* \<Psi>" by simp+
have FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" by fact
with `A\<^sub>P \<sharp>* Q` `A\<^sub>Q \<sharp>* A\<^sub>P` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q"
by(drule_tac extract_frame_fresh_chain) auto
have FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact
with `A\<^sub>P \<sharp>* R` `A\<^sub>R \<sharp>* A\<^sub>P` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(drule_tac extract_frame_fresh_chain) auto
from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'` `A\<^sub>P \<sharp>* R` `xvec \<sharp>* A\<^sub>P` `xvec \<sharp>* K` `distinct xvec` have "A\<^sub>P \<sharp>* N"
by(rule_tac output_fresh_chain_derivative) auto
from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> Q'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> Q'"
by(metis stat_eq_transition Associativity Commutativity Composition)
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>append_at_front_prov_option(Some (\<langle>A\<^sub>Q; yvec, K\<rangle>)) A\<^sub>P @ M\<lparr>N\<rparr> \<prec> (P \<parallel> Q')" using FrP `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* M` `A\<^sub>P \<sharp>* N`
by(rule_tac Par2) auto
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>Some (\<langle>(A\<^sub>P @ A\<^sub>Q); yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> (P \<parallel> Q')"
by(simp add: frame_chain_append)
moreover from FrP FrQ `A\<^sub>P \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>Q \<sharp>* A\<^sub>P` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>P` have "extract_frame(P \<parallel> Q) = \<langle>(A\<^sub>P@A\<^sub>Q), \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q\<rangle>"
by simp
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'` have "\<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'"
by(metis stat_eq_transition Associativity)
moreover note `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>`
moreover have "yvec \<sharp>* \<Psi>\<^sub>P" using `yvec \<sharp>* A\<^sub>P` `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `yvec \<sharp>* P`
by(auto dest: extract_frame_fresh_chain)
moreover have "yvec \<sharp>* \<Psi>\<^sub>Q" using `yvec \<sharp>* A\<^sub>Q` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>` `yvec \<sharp>* Q`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>P" using `zvec \<sharp>* A\<^sub>P` `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `zvec \<sharp>* P`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>Q" using `zvec \<sharp>* A\<^sub>Q` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>` `zvec \<sharp>* Q`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>R" using `zvec \<sharp>* A\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>` `zvec \<sharp>* R`
by(auto dest: extract_frame_fresh_chain)
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q') \<parallel> R')"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>Q \<sharp>* P` `A\<^sub>R \<sharp>* P` `A\<^sub>P \<sharp>* Q` `A\<^sub>Q \<sharp>* Q` `A\<^sub>R \<sharp>* Q` `A\<^sub>P \<sharp>* R` `A\<^sub>Q \<sharp>* R` `A\<^sub>R \<sharp>* R`
`A\<^sub>P \<sharp>* M` `A\<^sub>Q \<sharp>* M` `A\<^sub>R \<sharp>* K` `A\<^sub>R \<sharp>* A\<^sub>P` `A\<^sub>Q \<sharp>* A\<^sub>R` `xvec \<sharp>* P` `xvec \<sharp>* Q`
`yvec \<sharp>* \<Psi>` `zvec \<sharp>* \<Psi>` `yvec \<sharp>* R` `zvec \<sharp>* R` `yvec \<sharp>* P` `zvec \<sharp>* P` `yvec \<sharp>* Q` `zvec \<sharp>* Q`
by(rule_tac Comm1) (assumption|auto)+
moreover from `xvec \<sharp>* \<Psi>` `xvec \<sharp>* P` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q') \<parallel> R'), P \<parallel> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> R'))) \<in> Rel"
by(rule C2)
ultimately show ?case by blast
next
case(c_comm2 \<Psi>\<^sub>R M xvec N Q' A\<^sub>Q \<Psi>\<^sub>Q K R' A\<^sub>R yvec zvec)
from `A\<^sub>Q \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)`
have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* Q" and "A\<^sub>Q \<sharp>* R" and "A\<^sub>Q \<sharp>* A\<^sub>P" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" by simp+
from `A\<^sub>R \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q" and "A\<^sub>R \<sharp>* R" and "A\<^sub>R \<sharp>* A\<^sub>P"and "A\<^sub>R \<sharp>* \<Psi>" by simp+
from `xvec \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "xvec \<sharp>* A\<^sub>P" and "xvec \<sharp>* P" and "xvec \<sharp>* Q" and "xvec \<sharp>* \<Psi>" by simp+
from `yvec \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "yvec \<sharp>* A\<^sub>P" and "yvec \<sharp>* P" and "yvec \<sharp>* Q" and "yvec \<sharp>* \<Psi>" by simp+
from `zvec \<sharp>* (A\<^sub>P, \<Psi>\<^sub>P, P, Q, R, \<Psi>)` have "zvec \<sharp>* A\<^sub>P" and "zvec \<sharp>* P" and "zvec \<sharp>* Q" and "zvec \<sharp>* \<Psi>" by simp+
have FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" by fact
with `A\<^sub>P \<sharp>* Q` `A\<^sub>Q \<sharp>* A\<^sub>P` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q"
by(drule_tac extract_frame_fresh_chain) auto
have FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" by fact
with `A\<^sub>P \<sharp>* R` `A\<^sub>R \<sharp>* A\<^sub>P` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(drule_tac extract_frame_fresh_chain) auto
from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'` `A\<^sub>P \<sharp>* Q` `xvec \<sharp>* A\<^sub>P` `xvec \<sharp>* M` `distinct xvec` have "A\<^sub>P \<sharp>* N"
by(rule_tac output_fresh_chain_derivative) auto
from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'"
by(metis stat_eq_transition Associativity Commutativity Composition)
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>append_at_front_prov_option (Some (\<langle>A\<^sub>Q; yvec, K\<rangle>)) A\<^sub>P @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> (P \<parallel> Q')" using FrP `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* M` `A\<^sub>P \<sharp>* N` `xvec \<sharp>* P` `xvec \<sharp>* A\<^sub>P`
by(rule_tac Par2) auto
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>Some (\<langle>(A\<^sub>P @ A\<^sub>Q); yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> (P \<parallel> Q')"
by(simp add: frame_chain_append)
moreover from FrP FrQ `A\<^sub>P \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>Q \<sharp>* A\<^sub>P` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>P` have "extract_frame(P \<parallel> Q) = \<langle>(A\<^sub>P@A\<^sub>Q), \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q\<rangle>"
by simp+
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> R'` have "\<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> R'"
by(metis stat_eq_transition Associativity)
moreover note `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>`
moreover have "yvec \<sharp>* \<Psi>\<^sub>P" using `yvec \<sharp>* A\<^sub>P` `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `yvec \<sharp>* P`
by(auto dest: extract_frame_fresh_chain)
moreover have "yvec \<sharp>* \<Psi>\<^sub>Q" using `yvec \<sharp>* A\<^sub>Q` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>` `yvec \<sharp>* Q`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>P" using `zvec \<sharp>* A\<^sub>P` `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `zvec \<sharp>* P`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>Q" using `zvec \<sharp>* A\<^sub>Q` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>` `zvec \<sharp>* Q`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>R" using `zvec \<sharp>* A\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>` `zvec \<sharp>* R`
by(auto dest: extract_frame_fresh_chain)
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q') \<parallel> R')"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>Q \<sharp>* P` `A\<^sub>R \<sharp>* P` `A\<^sub>P \<sharp>* Q` `A\<^sub>Q \<sharp>* Q` `A\<^sub>R \<sharp>* Q` `A\<^sub>P \<sharp>* R` `A\<^sub>Q \<sharp>* R` `A\<^sub>R \<sharp>* R`
`A\<^sub>P \<sharp>* M` `A\<^sub>Q \<sharp>* M` `A\<^sub>R \<sharp>* K` `A\<^sub>R \<sharp>* A\<^sub>P` `A\<^sub>Q \<sharp>* A\<^sub>R` `xvec \<sharp>* R`
`yvec \<sharp>* \<Psi>` `zvec \<sharp>* \<Psi>` `yvec \<sharp>* R` `zvec \<sharp>* R` `yvec \<sharp>* P` `zvec \<sharp>* P` `yvec \<sharp>* Q` `zvec \<sharp>* Q`
by(rule_tac Comm2) (assumption | auto)+
moreover from `xvec \<sharp>* \<Psi>` `xvec \<sharp>* P` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P \<parallel> Q') \<parallel> R'), P \<parallel> (\<lparr>\<nu>*xvec\<rparr>(Q' \<parallel> R'))) \<in> Rel"
by(rule C2)
ultimately show ?case by blast
qed
next
case(c_comm1 \<Psi>\<^sub>Q\<^sub>R M N P' A\<^sub>P \<Psi>\<^sub>P K xvec QR' A\<^sub>Q\<^sub>R yvec zvec)
from `xvec \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "xvec \<sharp>* Q" and "xvec \<sharp>* R" by simp+
from `yvec \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "yvec \<sharp>* Q" and "yvec \<sharp>* R" by simp+
from `zvec \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "zvec \<sharp>* Q" and "zvec \<sharp>* R" by simp+
from `A\<^sub>Q\<^sub>R \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "A\<^sub>Q\<^sub>R \<sharp>* Q" and "A\<^sub>Q\<^sub>R \<sharp>* R" and "A\<^sub>Q\<^sub>R \<sharp>* \<Psi>" by simp+
from `A\<^sub>P \<sharp>* (Q \<parallel> R)` have "A\<^sub>P \<sharp>* Q" and "A\<^sub>P \<sharp>* R" by simp+
have P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>Q\<^sub>R \<rhd> P \<longmapsto>Some (\<langle>A\<^sub>P; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> P'" and FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" by fact+
note `\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> Q \<parallel> R \<longmapsto>Some (\<langle>A\<^sub>Q\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> QR'`
moreover from `xvec \<sharp>* \<Psi>` `xvec \<sharp>* \<Psi>\<^sub>P` have "xvec \<sharp>* (\<Psi> \<otimes> \<Psi>\<^sub>P)" by force
moreover note `xvec \<sharp>* Q``xvec \<sharp>* R` `xvec \<sharp>* K`
`extract_frame(Q \<parallel> R) = \<langle>A\<^sub>Q\<^sub>R, \<Psi>\<^sub>Q\<^sub>R\<rangle>` `distinct A\<^sub>Q\<^sub>R`
moreover from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>\<^sub>P` have "A\<^sub>Q\<^sub>R \<sharp>* (\<Psi> \<otimes> \<Psi>\<^sub>P)" by force
ultimately show ?case using `A\<^sub>Q\<^sub>R \<sharp>* Q` `A\<^sub>Q\<^sub>R \<sharp>* R` `A\<^sub>Q\<^sub>R \<sharp>* K`
proof(induct rule: par_cases_output_frame)
case(c_par1 \<pi> Q' A\<^sub>Q \<Psi>\<^sub>Q A\<^sub>R \<Psi>\<^sub>R)
from `Some (\<langle>A\<^sub>Q\<^sub>R; zvec, M\<rangle>) = append_at_end_prov_option \<pi> A\<^sub>R` `A\<^sub>Q \<sharp>* A\<^sub>R` `distinct A\<^sub>R` `distinct A\<^sub>Q`
have \<pi>: "Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) = \<pi>" unfolding `A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R`
by(auto intro: append_at_end_prov_option_eq_elim)
have Aeq: "A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R" and \<Psi>eq: "\<Psi>\<^sub>Q\<^sub>R = \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R" by fact+
from P_trans \<Psi>eq have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q \<rhd> P \<longmapsto>Some (\<langle>A\<^sub>P; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> P'"
by(metis stat_eq_transition Associativity Commutativity Composition)
moreover note FrP
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>\<pi> @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<rhd> Q \<longmapsto>\<pi> @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'"
by(metis stat_eq_transition Associativity Commutativity Composition)
hence "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> Q'"
by(simp add: \<pi>)
moreover note `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>`
moreover from `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` Aeq `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>` have "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(auto dest: extract_frame_fresh_chain)
moreover from `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` Aeq have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* \<Psi>" by simp+
moreover have "yvec \<sharp>* \<Psi>\<^sub>P" using `yvec \<sharp>* A\<^sub>P` `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `yvec \<sharp>* P`
by(auto dest: extract_frame_fresh_chain)
moreover have "yvec \<sharp>* \<Psi>\<^sub>Q" using `yvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>` `yvec \<sharp>* Q` Aeq
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>P" using `zvec \<sharp>* A\<^sub>P` `extract_frame P = \<langle>A\<^sub>P,\<Psi>\<^sub>P\<rangle>` `zvec \<sharp>* P`
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>Q" using `zvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>` `zvec \<sharp>* Q` Aeq
by(auto dest: extract_frame_fresh_chain)
moreover have "zvec \<sharp>* \<Psi>\<^sub>R" using `zvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>` `zvec \<sharp>* R` Aeq
by(auto dest: extract_frame_fresh_chain)
moreover have "yvec \<sharp>* \<Psi>\<^sub>R" using `yvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>` `yvec \<sharp>* R` Aeq
by(auto dest: extract_frame_fresh_chain)
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* M` `A\<^sub>P \<sharp>* A\<^sub>Q` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* P` `A\<^sub>Q \<sharp>* Q` `A\<^sub>Q \<sharp>* K` `xvec \<sharp>* P` `yvec \<sharp>* \<Psi>` `yvec \<sharp>* P` `yvec \<sharp>* Q` `zvec \<sharp>* \<Psi>` `zvec \<sharp>* P` `zvec \<sharp>* Q`
by(rule_tac Comm1) (assumption | force)+
moreover from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` Aeq have "A\<^sub>R \<sharp>* \<Psi>" by simp
moreover from `A\<^sub>Q\<^sub>R \<sharp>* P` Aeq have "A\<^sub>R \<sharp>* P" by simp
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>None @ \<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')) \<parallel> R" using `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>` `A\<^sub>R \<sharp>* Q`
by(drule_tac Par1) (assumption | simp)+
moreover from `xvec \<sharp>* \<Psi>` `xvec \<sharp>* R` have "(\<Psi>, (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')) \<parallel> R, \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> (Q' \<parallel> R))) \<in> Rel"
by(rule C3)
ultimately show ?case by blast
next
case(c_par2 \<pi> R' A\<^sub>Q \<Psi>\<^sub>Q A\<^sub>R \<Psi>\<^sub>R)
from `Some (\<langle>A\<^sub>Q\<^sub>R; zvec, M\<rangle>) = append_at_front_prov_option \<pi> A\<^sub>Q` `A\<^sub>Q \<sharp>* A\<^sub>R` `distinct A\<^sub>R` `distinct A\<^sub>Q`
have \<pi>: "Some (\<langle>A\<^sub>R; zvec, M\<rangle>) = \<pi>" unfolding `A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R`
by(induct \<pi>) (auto simp add: frame_chain_append dest: frame_chain_inject')
have Aeq: "A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R" and \<Psi>eq: "\<Psi>\<^sub>Q\<^sub>R = \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R"
by fact+
from `A\<^sub>Q \<sharp>* R` `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto> \<pi> @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'` \<pi>[symmetric] `A\<^sub>Q \<sharp>* A\<^sub>R` `zvec \<sharp>* A\<^sub>Q\<^sub>R` Aeq
have "A\<^sub>Q \<sharp>* M"
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'')
from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>\<^sub>P` `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` Aeq have "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>P \<sharp>* A\<^sub>R" and "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>R \<sharp>* P" by simp+
from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` Aeq have "A\<^sub>Q \<sharp>* \<Psi>" by simp
from `A\<^sub>Q\<^sub>R \<sharp>* P` Aeq have "A\<^sub>Q \<sharp>* P" by simp
from `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` Aeq FrP have "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" by(auto dest: extract_frame_fresh_chain)
from `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>` `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` Aeq `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* R` have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>R" by(auto dest: extract_frame_fresh_chain)
have R_trans: "(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'" and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" unfolding \<pi> by fact+
from P_trans \<Psi>eq have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q \<rhd> P \<longmapsto>Some (\<langle>A\<^sub>P; yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> P'"
by(metis stat_eq_transition Associativity Commutativity Composition)
moreover from `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>Q\<^sub>R \<sharp>* N` Aeq have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* N" by simp+
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>Some (\<langle>(A\<^sub>P@A\<^sub>Q); yvec, K\<rangle>) @ M\<lparr>N\<rparr> \<prec> P' \<parallel> Q" using `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* M` `A\<^sub>P \<sharp>* A\<^sub>Q`
by(drule_tac Par1) auto
moreover from FrP `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` `A\<^sub>P \<sharp>* A\<^sub>Q` `A\<^sub>P \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>P`
have "extract_frame(P \<parallel> Q) = \<langle>(A\<^sub>P@A\<^sub>Q), \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q\<rangle>" by simp+
moreover have "\<Psi> \<otimes> (\<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q) \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> R'"
using R_trans
by(metis Associativity stat_eq_transition)
moreover note FrR
moreover have "yvec \<sharp>* \<Psi>\<^sub>Q"
using `yvec \<sharp>* Q` `yvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
moreover have "zvec \<sharp>* \<Psi>\<^sub>R"
using `zvec \<sharp>* R` `zvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>((P' \<parallel> Q) \<parallel> R')"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>Q \<sharp>* P` `A\<^sub>P \<sharp>* Q` `A\<^sub>Q \<sharp>* Q` `A\<^sub>P \<sharp>* R` `A\<^sub>Q \<sharp>* R`
`A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* R` (*`A\<^sub>P \<sharp>* K'` `A\<^sub>Q \<sharp>* M` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>Q \<sharp>* A\<^sub>R``A\<^sub>R \<sharp>* M'`*) `xvec \<sharp>* P` `xvec \<sharp>* Q`
`yvec \<sharp>* \<Psi>` `zvec \<sharp>* \<Psi>`
`yvec \<sharp>* \<Psi>\<^sub>P` `yvec \<sharp>* R` `zvec \<sharp>* P` `zvec \<sharp>* Q`
by(rule_tac Comm1) (assumption | force)+
moreover from `xvec \<sharp>* \<Psi>` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P' \<parallel> Q) \<parallel> R'), \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> (Q \<parallel> R'))) \<in> Rel"
by(metis C1 C4)
ultimately show ?case by blast
qed
next
case(c_comm2 \<Psi>\<^sub>Q\<^sub>R M xvec N P' A\<^sub>P \<Psi>\<^sub>P K QR' A\<^sub>Q\<^sub>R yvec zvec)
from `A\<^sub>Q\<^sub>R \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "A\<^sub>Q\<^sub>R \<sharp>* Q" and "A\<^sub>Q\<^sub>R \<sharp>* R" and "A\<^sub>Q\<^sub>R \<sharp>* \<Psi>" by simp+
from `yvec \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "yvec \<sharp>* Q" and "yvec \<sharp>* R" by simp+
from `zvec \<sharp>* (\<Psi>, P, Q, R, \<alpha>)` have "zvec \<sharp>* Q" and "zvec \<sharp>* R" by simp+
from `A\<^sub>P \<sharp>* (Q \<parallel> R)` `xvec \<sharp>* (Q \<parallel> R)` have "A\<^sub>P \<sharp>* Q" and "A\<^sub>P \<sharp>* R" and "xvec \<sharp>* Q" and "xvec \<sharp>* R" by simp+
have P_trans: "\<Psi> \<otimes> \<Psi>\<^sub>Q\<^sub>R \<rhd> P \<longmapsto>Some (\<langle>A\<^sub>P; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P'" and FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" by fact+
note `\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> Q \<parallel> R \<longmapsto>Some (\<langle>A\<^sub>Q\<^sub>R; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> QR'` `extract_frame(Q \<parallel> R) = \<langle>A\<^sub>Q\<^sub>R, \<Psi>\<^sub>Q\<^sub>R\<rangle>` `distinct A\<^sub>Q\<^sub>R`
moreover from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>\<^sub>P` have "A\<^sub>Q\<^sub>R \<sharp>* (\<Psi> \<otimes> \<Psi>\<^sub>P)" by force
ultimately show ?case using `A\<^sub>Q\<^sub>R \<sharp>* Q` `A\<^sub>Q\<^sub>R \<sharp>* R` `A\<^sub>Q\<^sub>R \<sharp>* K`
proof(induct rule: par_cases_input_frame)
case(c_par1 \<pi> Q' A\<^sub>Q \<Psi>\<^sub>Q A\<^sub>R \<Psi>\<^sub>R)
have Aeq: "A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R" and \<Psi>eq: "\<Psi>\<^sub>Q\<^sub>R = \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R" by fact+
from `A\<^sub>Q \<sharp>* A\<^sub>R` `distinct A\<^sub>Q` `distinct A\<^sub>R` `Some (\<langle>A\<^sub>Q\<^sub>R; zvec, M\<rangle>) = append_at_end_prov_option \<pi> A\<^sub>R`
have \<pi>: "Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) = \<pi>"
unfolding Aeq
by(rule_tac append_at_end_prov_option_eq_elim)
from P_trans \<Psi>eq have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q \<rhd> P \<longmapsto>Some (\<langle>A\<^sub>P; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P'"
by(metis stat_eq_transition Associativity Commutativity Composition)
moreover note FrP
moreover from `(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>R \<rhd> Q \<longmapsto>\<pi> @ K\<lparr>N\<rparr> \<prec> Q'` have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P \<rhd> Q \<longmapsto>Some (\<langle>A\<^sub>Q; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> Q'"
unfolding \<pi>
by(metis stat_eq_transition Associativity Commutativity Composition)
moreover note `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>`
moreover from `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` Aeq `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>`
have "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>R" by(auto dest: extract_frame_fresh_chain)
moreover from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* P` Aeq have "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* P" by simp+
moreover have "yvec \<sharp>* \<Psi>\<^sub>R"
using `yvec \<sharp>* R` `yvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
moreover have "zvec \<sharp>* \<Psi>\<^sub>R"
using `zvec \<sharp>* R` `zvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
moreover have "zvec \<sharp>* \<Psi>\<^sub>Q"
using `zvec \<sharp>* Q` `zvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* M` `A\<^sub>P \<sharp>* A\<^sub>Q` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* P` `A\<^sub>Q \<sharp>* Q` `A\<^sub>Q \<sharp>* K` `xvec \<sharp>* Q` `yvec \<sharp>* \<Psi>` `yvec \<sharp>* \<Psi>\<^sub>P` `yvec \<sharp>* Q` `zvec \<sharp>* \<Psi>` `zvec \<sharp>* P`
by(rule_tac Comm2) (assumption | force)+
moreover from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* P` Aeq have "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" by simp+
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto> append_at_end_prov_option None A\<^sub>R @ \<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')) \<parallel> R" using `extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>` `A\<^sub>R \<sharp>* Q`
by(rule_tac Par1) (assumption | simp)+
hence "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>None @ \<tau> \<prec> (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')) \<parallel> R"
by simp
moreover from `xvec \<sharp>* \<Psi>` `xvec \<sharp>* R` have "(\<Psi>, (\<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')) \<parallel> R, \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> (Q' \<parallel> R))) \<in> Rel"
by(rule C3)
ultimately show ?case by blast
next
case(c_par2 \<pi> R' A\<^sub>Q \<Psi>\<^sub>Q A\<^sub>R \<Psi>\<^sub>R)
have Aeq: "A\<^sub>Q\<^sub>R = A\<^sub>Q@A\<^sub>R" and \<Psi>eq: "\<Psi>\<^sub>Q\<^sub>R = \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R" by fact+
from `Some (\<langle>A\<^sub>Q\<^sub>R; zvec, M\<rangle>) = append_at_front_prov_option \<pi> A\<^sub>Q`
have \<pi>: "Some(\<langle>A\<^sub>R; zvec, M\<rangle>) = \<pi>" unfolding Aeq
by(rule append_at_front_prov_option_eq_elim)
from `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>` `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>Q\<^sub>R \<sharp>* \<Psi>\<^sub>P` `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` Aeq
have "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>P \<sharp>* A\<^sub>R" and "A\<^sub>P \<sharp>* A\<^sub>Q" and "A\<^sub>R \<sharp>* P" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>P" by simp+
have R_trans: "(\<Psi> \<otimes> \<Psi>\<^sub>P) \<otimes> \<Psi>\<^sub>Q \<rhd> R \<longmapsto>Some(\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> R'"
and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" unfolding \<pi> by fact+
from P_trans \<Psi>eq have "(\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q \<rhd> P \<longmapsto>Some (\<langle>A\<^sub>P; yvec, K\<rangle>) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> P'"
by(metis stat_eq_transition Associativity Commutativity Composition)
moreover from `A\<^sub>P \<sharp>* R` `A\<^sub>P \<sharp>* Q` `A\<^sub>P \<sharp>* A\<^sub>Q\<^sub>R` FrR `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` Aeq have "A\<^sub>P \<sharp>* \<Psi>\<^sub>Q" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(auto dest: extract_frame_fresh_chain)
moreover from `A\<^sub>Q\<^sub>R \<sharp>* P` `A\<^sub>Q\<^sub>R \<sharp>* N` `A\<^sub>Q\<^sub>R \<sharp>* xvec` Aeq have "A\<^sub>Q \<sharp>* P" and "A\<^sub>Q \<sharp>* N" and "A\<^sub>Q \<sharp>* xvec" by simp+
moreover from `A\<^sub>Q \<sharp>* R` R_trans `A\<^sub>Q \<sharp>* A\<^sub>R` `zvec \<sharp>* A\<^sub>Q\<^sub>R`
have "A\<^sub>Q \<sharp>* M" unfolding Aeq
by(auto dest!: trans_fresh_provenance simp add: frame_chain_fresh_chain'')
ultimately have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>append_at_end_prov_option(Some (\<langle>A\<^sub>P; yvec, K\<rangle>)) A\<^sub>Q @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> (P' \<parallel> Q)" using `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* K` `xvec \<sharp>* Q` `A\<^sub>Q \<sharp>* \<Psi>`
by(rule_tac Par1) (assumption|force)+
hence "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<parallel> Q \<longmapsto>(Some (\<langle>(A\<^sub>P @ A\<^sub>Q); yvec, K\<rangle>)) @ M\<lparr>\<nu>*xvec\<rparr>\<langle>N\<rangle> \<prec> (P' \<parallel> Q)"
using `A\<^sub>P \<sharp>* A\<^sub>Q`
by simp
moreover from FrP `extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` `A\<^sub>P \<sharp>* A\<^sub>Q` `A\<^sub>P \<sharp>* \<Psi>\<^sub>Q` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>P`
have "extract_frame(P \<parallel> Q) = \<langle>(A\<^sub>P@A\<^sub>Q), \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q\<rangle>" by simp+
moreover from R_trans have "\<Psi> \<otimes> (\<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>Q) \<rhd> R \<longmapsto>Some (\<langle>A\<^sub>R; zvec, M\<rangle>) @ K\<lparr>N\<rparr> \<prec> R'" by(metis Associativity stat_eq_transition)
moreover note FrR
moreover have "yvec \<sharp>* \<Psi>\<^sub>Q"
using `yvec \<sharp>* Q` `yvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame Q = \<langle>A\<^sub>Q,\<Psi>\<^sub>Q\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
moreover have "zvec \<sharp>* \<Psi>\<^sub>R"
using `zvec \<sharp>* R` `zvec \<sharp>* A\<^sub>Q\<^sub>R` `extract_frame R = \<langle>A\<^sub>R,\<Psi>\<^sub>R\<rangle>`
by(auto dest: extract_frame_fresh_chain simp add: Aeq)
ultimately have "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<longmapsto>None @ \<tau> \<prec> \<lparr>\<nu>*xvec\<rparr>((P' \<parallel> Q) \<parallel> R')"
using `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* P` `A\<^sub>Q \<sharp>* P` `A\<^sub>P \<sharp>* Q` `A\<^sub>Q \<sharp>* Q` `A\<^sub>P \<sharp>* R` `A\<^sub>Q \<sharp>* R` `A\<^sub>P \<sharp>* M` `A\<^sub>Q \<sharp>* M` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>Q \<sharp>* A\<^sub>R`
`A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>R \<sharp>* R` `A\<^sub>R \<sharp>* K` `xvec \<sharp>* R`
`yvec \<sharp>* \<Psi>` `zvec \<sharp>* \<Psi>` `yvec \<sharp>* \<Psi>\<^sub>P` `yvec \<sharp>* R` `zvec \<sharp>* P` `zvec \<sharp>* Q`
by(rule_tac Comm2) (assumption | force)+
moreover from `xvec \<sharp>* \<Psi>` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>((P' \<parallel> Q) \<parallel> R'), \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> (Q \<parallel> R'))) \<in> Rel"
by(metis C1 C4)
ultimately show ?case by blast
qed
qed
qed
lemma par_nil_left:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes "eqvt Rel"
and C1: "\<And>Q. (\<Psi>, Q \<parallel> \<zero>, Q) \<in> Rel"
shows "\<Psi> \<rhd> (P \<parallel> \<zero>) \<leadsto>[Rel] P"
using `eqvt Rel`
proof(induct rule: simI[of _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> P')
from `\<Psi> \<rhd> P \<longmapsto>\<pi> @ \<alpha> \<prec> P'` have "\<Psi> \<otimes> S_bottom' \<rhd> P \<longmapsto>\<pi> @ \<alpha> \<prec> P'"
by(metis stat_eq_transition Identity Assertion_stat_eq_sym)
hence "\<Psi> \<rhd> (P \<parallel> \<zero>) \<longmapsto>\<pi> @ \<alpha> \<prec> (P' \<parallel> \<zero>)"
by(drule_tac Par1[where Q="\<zero>"]) (auto simp add: option.map_ident)
moreover have "(\<Psi>, P' \<parallel> \<zero>, P') \<in> Rel" by(rule C1)
ultimately show ?case by blast
qed
lemma par_nil_right:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes "eqvt Rel"
and C1: "\<And>Q. (\<Psi>, Q, (Q \<parallel> \<zero>)) \<in> Rel"
shows "\<Psi> \<rhd> P \<leadsto>[Rel] (P \<parallel> \<zero>)"
using `eqvt Rel`
proof(induct rule: simI[of _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> P')
note `\<Psi> \<rhd> P \<parallel> \<zero> \<longmapsto>\<pi> @ \<alpha> \<prec> P'` `bn \<alpha> \<sharp>* \<Psi>` `bn \<alpha> \<sharp>* P`
moreover have "bn \<alpha> \<sharp>* \<zero>" by simp
ultimately show ?case using `bn \<alpha> \<sharp>* subject \<alpha>`
proof(induct rule: par_cases[where C="()"])
case(c_par1 P' \<pi>' A\<^sub>Q \<Psi>\<^sub>Q)
from `extract_frame(\<zero>) = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>` have "\<Psi>\<^sub>Q = S_bottom'" by auto
with `\<Psi> \<otimes> \<Psi>\<^sub>Q \<rhd> P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'` have "\<Psi> \<rhd> P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'"
by(metis stat_eq_transition Identity)
moreover have "(\<Psi>, P', P' \<parallel> \<zero>) \<in> Rel" by(rule C1)
ultimately show ?case by blast
next
case(c_par2 Q' \<pi>' A\<^sub>P \<Psi>\<^sub>P)
from `\<Psi> \<otimes> \<Psi>\<^sub>P \<rhd> \<zero> \<longmapsto>\<pi>' @ \<alpha> \<prec> Q'` have False
by auto
thus ?case by simp
next
case(c_comm1 \<Psi>\<^sub>Q M N P' A\<^sub>P \<Psi>\<^sub>P K xvec Q' A\<^sub>Q yvec zvec)
thus ?case by(metis nil_trans)
next
case(c_comm2 \<Psi>\<^sub>Q M xvec N P' A\<^sub>P \<Psi>\<^sub>P K Q' A\<^sub>Q)
thus ?case by(metis nil_trans)
qed
qed
lemma res_nil_left:
fixes x :: name
and \<Psi> :: 'b
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>\<zero> \<leadsto>[Rel] \<zero>"
by(auto simp add: simulation_def)
lemma res_nil_right:
fixes x :: name
and \<Psi> :: 'b
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
shows "\<Psi> \<rhd> \<zero> \<leadsto>[Rel] \<lparr>\<nu>x\<rparr>\<zero>"
apply(auto simp add: simulation_def)
by(cases rule: semantics.cases) (auto simp add: psi.inject alpha')
lemma input_push_res_left:
fixes \<Psi> :: 'b
and x :: name
and M :: 'a
and xvec :: "name list"
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "eqvt Rel"
and "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> xvec"
and "x \<sharp> N"
and C1: "\<And>Q. (\<Psi>, Q, Q) \<in> Rel"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P) \<leadsto>[Rel] M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P)" by(simp add: abs_fresh)
moreover from `x \<sharp> M` `x \<sharp> N` have "x \<sharp> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P"
by(auto simp add: input_chain_fresh abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_fresh[of _ _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> P')
from `\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P \<longmapsto>\<pi> @ \<alpha> \<prec> P'` `x \<sharp> \<alpha>` `x \<sharp> \<pi>` show ?case
proof(induct rule: input_cases)
case(c_input K Tvec)
have \<pi>: "\<pi> = Some (\<langle>\<epsilon>; \<epsilon>, M\<rangle>)" by fact
from `x \<sharp> K\<lparr>N[xvec::=Tvec]\<rparr>` have "x \<sharp> K" and "x \<sharp> N[xvec::=Tvec]" by simp+
from `\<Psi> \<turnstile> K \<leftrightarrow> M` `distinct xvec` `set xvec \<subseteq> supp N` `length xvec = length Tvec`
have "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<longmapsto>\<pi> @ K\<lparr>(N[xvec::=Tvec])\<rparr> \<prec> P[xvec::=Tvec]"
unfolding \<pi>
by(rule Input)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P) \<longmapsto>map_option (F_res x) \<pi> @ K\<lparr>(N[xvec::=Tvec])\<rparr> \<prec> \<lparr>\<nu>x\<rparr>(P[xvec::=Tvec])" using `x \<sharp> \<Psi>` `x \<sharp> K` `x \<sharp> N[xvec::=Tvec]`
by(rule_tac Scope) auto
moreover from `length xvec = length Tvec` `distinct xvec` `set xvec \<subseteq> supp N` `x \<sharp> N[xvec::=Tvec]` have "x \<sharp> Tvec"
by(rule subst_term.subst3)
with `x \<sharp> xvec` have "(\<Psi>, \<lparr>\<nu>x\<rparr>(P[xvec::=Tvec]), (\<lparr>\<nu>x\<rparr>P)[xvec::=Tvec]) \<in> Rel"
by(force intro: C1)
ultimately show ?case by blast
qed
qed
qed
lemma input_push_res_right:
fixes \<Psi> :: 'b
and x :: name
and M :: 'a
and xvec :: "name list"
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "eqvt Rel"
and "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> xvec"
and "x \<sharp> N"
and C1: "\<And>Q. (\<Psi>, Q, Q) \<in> Rel"
shows "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P \<leadsto>[Rel] \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P)"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover from `x \<sharp> M` `x \<sharp> N` have "x \<sharp> M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P"
by(auto simp add: input_chain_fresh abs_fresh)
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P)" by(simp add: abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_fresh[of _ _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> P')
note `\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P) \<longmapsto>\<pi> @ \<alpha> \<prec> P'` `x \<sharp> \<Psi>` `x \<sharp> \<alpha>` `x \<sharp> P'` `bn \<alpha> \<sharp>* \<Psi>`
moreover from `bn \<alpha> \<sharp>* (\<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P))` `x \<sharp> \<alpha>` have "bn \<alpha> \<sharp>* (M\<lparr>\<lambda>*xvec N\<rparr>.P)"
by simp
ultimately show ?case using `bn \<alpha> \<sharp>* subject \<alpha>`
proof(induct rule: res_cases)
case(c_res \<pi>' P')
have \<pi>: "\<pi> = map_option (F_res x) \<pi>'" by fact
from `\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'` `x \<sharp> \<alpha>` show ?case
proof(induct rule: input_cases)
case(c_input K Tvec)
have \<pi>': "\<pi>' = Some (\<langle>\<epsilon>; \<epsilon>, M\<rangle>)" by fact
from `x \<sharp> K\<lparr>N[xvec::=Tvec]\<rparr>` have "x \<sharp> K" and "x \<sharp> N[xvec::=Tvec]" by simp+
from `\<Psi> \<turnstile> K \<leftrightarrow> M` `distinct xvec` `set xvec \<subseteq> supp N` `length xvec = length Tvec`
have "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.(\<lparr>\<nu>x\<rparr>P) \<longmapsto>\<pi>' @ K\<lparr>(N[xvec::=Tvec])\<rparr> \<prec> (\<lparr>\<nu>x\<rparr>P)[xvec::=Tvec]"
unfolding \<pi>'
by(rule Input)
moreover from `length xvec = length Tvec` `distinct xvec` `set xvec \<subseteq> supp N` `x \<sharp> N[xvec::=Tvec]` have "x \<sharp> Tvec"
by(rule subst_term.subst3)
with `x \<sharp> xvec` have "(\<Psi>, (\<lparr>\<nu>x\<rparr>P)[xvec::=Tvec], \<lparr>\<nu>x\<rparr>(P[xvec::=Tvec])) \<in> Rel"
by(force intro: C1)
ultimately show ?case by blast
qed
next
case c_open
then have False by auto
thus ?case by simp
qed
qed
qed
lemma output_push_res_left:
fixes \<Psi> :: 'b
and x :: name
and M :: 'a
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "eqvt Rel"
and "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> N"
and C1: "\<And>Q. (\<Psi>, Q, Q) \<in> Rel"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<leadsto>[Rel] M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P)" by(simp add: abs_fresh)
moreover from `x \<sharp> M` `x \<sharp> N` have "x \<sharp> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P"
by(auto simp add: abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_fresh[of _ _ _ _ _ "()"])
case(c_sim \<pi> \<alpha> P')
from `\<Psi> \<rhd> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P \<longmapsto>\<pi> @ \<alpha> \<prec> P'` `x \<sharp> \<alpha>`
show ?case
proof(induct rule: output_cases)
case(c_output K)
have \<pi>: "\<pi> = Some (\<langle>\<epsilon>; \<epsilon>, M\<rangle>)" by fact
from `\<Psi> \<turnstile> M \<leftrightarrow> K` have "\<Psi> \<rhd> M\<langle>N\<rangle>.P \<longmapsto>\<pi> @ K\<langle>N\<rangle> \<prec> P"
unfolding \<pi>
by(rule Output)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<longmapsto>map_option (F_res x) \<pi> @ K\<langle>N\<rangle> \<prec> \<lparr>\<nu>x\<rparr>P" using `x \<sharp> \<Psi>` `x \<sharp> K\<langle>N\<rangle>`
by(rule Scope)
moreover have "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>P) \<in> Rel" by(rule C1)
ultimately show ?case by blast
qed
qed
qed
lemma output_push_res_right:
fixes \<Psi> :: 'b
and x :: name
and M :: 'a
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "eqvt Rel"
and "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> N"
and C1: "\<And>Q. (\<Psi>, Q, Q) \<in> Rel"
shows "\<Psi> \<rhd> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P \<leadsto>[Rel] \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P)"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover from `x \<sharp> M` `x \<sharp> N` have "x \<sharp> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P"
by(auto simp add: abs_fresh)
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P)" by(simp add: abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_fresh[of _ _ _ _ _ "(M, N)"])
case(c_sim \<pi> \<alpha> P')
note `\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<longmapsto>\<pi> @ \<alpha> \<prec> P'` `x \<sharp> \<Psi>` `x \<sharp> \<alpha>` `x \<sharp> P'` `bn \<alpha> \<sharp>* \<Psi>`
moreover from `bn \<alpha> \<sharp>* (\<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P))` `x \<sharp> \<alpha>` have "bn \<alpha> \<sharp>* (M\<langle>N\<rangle>.P)" by simp
ultimately show ?case using `bn \<alpha> \<sharp>* subject \<alpha>` `bn \<alpha> \<sharp>* (M, N)` `x \<sharp> \<alpha>`
proof(induct rule: res_cases)
case(c_open K \<pi>' xvec1 xvec2 y N' P')
from `bn(K\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N'\<rangle>) \<sharp>* (M, N)` have "y \<sharp> N" by simp+
from `\<Psi> \<rhd> M\<langle>N\<rangle>.P \<longmapsto>Some \<pi>' @ K\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N')\<rangle> \<prec> ([(x, y)] \<bullet> P')`
have "N = ([(x, y)] \<bullet> N')"
apply -
by(ind_cases "\<Psi> \<rhd> M\<langle>N\<rangle>.P \<longmapsto>Some \<pi>' @ K\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N')\<rangle> \<prec> ([(x, y)] \<bullet> P')")
(auto simp add: residual_inject psi.inject)
with `x \<sharp> N` `y \<sharp> N` `x \<noteq> y` have "N = N'"
by(subst pt_bij[OF pt_name_inst, OF at_name_inst, symmetric, where pi="[(x, y)]"])
(simp add: fresh_left calc_atm)
with `y \<in> supp N'` `y \<sharp> N` have False by(simp add: fresh_def)
thus ?case by simp
next
case(c_res \<pi>' P')
from `\<Psi> \<rhd> M\<langle>N\<rangle>.P \<longmapsto>\<pi>' @ \<alpha> \<prec> P'` show ?case
proof(induct rule: output_cases)
case(c_output K)
have \<pi>': "\<pi>' = Some (\<langle>\<epsilon>; \<epsilon>, M\<rangle>)" by fact
from `\<Psi> \<turnstile> M \<leftrightarrow> K` have "\<Psi> \<rhd> M\<langle>N\<rangle>.(\<lparr>\<nu>x\<rparr>P) \<longmapsto>\<pi>' @ K\<langle>N\<rangle> \<prec> \<lparr>\<nu>x\<rparr>P"
unfolding \<pi>'
by(rule Output)
moreover have "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>P) \<in> Rel" by(rule C1)
ultimately show ?case by force
qed
qed
qed
qed
lemma case_push_res_left:
fixes \<Psi> :: 'b
and x :: name
and Cs :: "('c \<times> ('a, 'b, 'c) psi) list"
assumes "eqvt Rel"
and "x \<sharp> \<Psi>"
and "x \<sharp> map fst Cs"
and C1: "\<And>Q. (\<Psi>, Q, Q) \<in> Rel"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<leadsto>[Rel] Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(Cases Cs)" by(simp add: abs_fresh)
moreover from `x \<sharp> map fst Cs` have "x \<sharp> Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)"
by(induct Cs) (auto simp add: abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_fresh[of _ _ _ _ _ Cs])
case(c_sim \<pi> \<alpha> P'')
from `\<Psi> \<rhd> Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs) \<longmapsto>\<pi> @ \<alpha> \<prec> P''`
show ?case
proof(induct rule: case_cases)
case(c_case \<phi> P' \<pi>')
have \<pi>: "\<pi> = map_option (F_assert \<circ> push_prov) \<pi>'" by fact
from `(\<phi>, P') mem (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)`
obtain P where "(\<phi>, P) mem Cs" and "P' = \<lparr>\<nu>x\<rparr>P"
by(induct Cs) auto
from `guarded P'` `P' = \<lparr>\<nu>x\<rparr>P` have "guarded P" by simp
from `\<Psi> \<rhd> P' \<longmapsto>\<pi>' @ \<alpha> \<prec> P''` `P' = \<lparr>\<nu>x\<rparr>P` have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto> \<pi>' @ \<alpha> \<prec> P''"
by simp
moreover note `x \<sharp> \<Psi>` `x \<sharp> \<alpha>` `x \<sharp> P''` `bn \<alpha> \<sharp>* \<Psi>`
moreover from `(\<phi>, P) mem Cs` `bn \<alpha> \<sharp>* Cs`
have "bn \<alpha> \<sharp>* (\<phi>, P)" by(rule mem_fresh_chain)
hence "bn \<alpha> \<sharp>* P" by auto
ultimately show ?case using `bn \<alpha> \<sharp>* subject \<alpha>` `x \<sharp> \<alpha>` `bn \<alpha> \<sharp>* Cs`
proof(induct rule: res_cases)
case(c_open M \<pi>'' xvec1 xvec2 y N P')
have \<pi>': "\<pi>' = Some (\<lparr>\<nu>x\<rparr>\<pi>'')" by fact
from `x \<sharp> M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>` have "x \<sharp> xvec1" and "x \<sharp> xvec2" and "x \<sharp> M" by simp+
from `bn(M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* Cs` have "y \<sharp> Cs" by simp
from `\<Psi> \<rhd> P \<longmapsto>Some \<pi>'' @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> P')` `(\<phi>, P) mem Cs` `\<Psi> \<turnstile> \<phi>` `guarded P`
have "\<Psi> \<rhd> Cases Cs \<longmapsto> map_option (F_assert \<circ> push_prov) (Some \<pi>'') @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> P')" by(rule Case)
hence "([(x, y)] \<bullet> \<Psi>) \<rhd> ([(x, y)] \<bullet> (Cases Cs)) \<longmapsto> ([(x, y)] \<bullet> map_option (F_assert \<circ> push_prov) (Some \<pi>'')) @ ([(x, y)] \<bullet> (M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> P')))"
by(rule semantics.eqvt)
with `x \<sharp> \<Psi>` `x \<sharp> M` `y \<sharp> xvec1` `y \<sharp> xvec2` `y \<sharp> \<Psi>` `y \<sharp> M` `x \<sharp> xvec1` `x \<sharp> xvec2`
have "\<Psi> \<rhd> ([(x, y)] \<bullet> (Cases Cs)) \<longmapsto> Some(F_assert(push_prov([(x, y)] \<bullet> \<pi>''))) @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" by(simp add: eqvts)
hence "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> (Cases Cs)) \<longmapsto> (Some(\<lparr>\<nu>y\<rparr>(F_assert(push_prov([(x, y)] \<bullet> \<pi>''))))) @ M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" using `y \<in> supp N` `y \<sharp> \<Psi>` `y \<sharp> M` `y \<sharp> xvec1` `y \<sharp> xvec2`
by(rule Open)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<longmapsto>(Some(\<lparr>\<nu>y\<rparr>(F_assert(push_prov([(x, y)] \<bullet> \<pi>''))))) @ M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" using `y \<sharp> Cs`
by(simp add: alpha_res)
moreover have "(\<Psi>, P', P') \<in> Rel" by(rule C1)
ultimately show ?case by blast
next
case(c_res \<pi>'' P')
have \<pi>: "\<pi>' = map_option (F_res x) \<pi>''" by fact
from `\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'` `(\<phi>, P) mem Cs` `\<Psi> \<turnstile> \<phi>` `guarded P`
have "\<Psi> \<rhd> Cases Cs \<longmapsto>map_option (F_assert o push_prov) \<pi>'' @ \<alpha> \<prec> P'"
by(rule Case)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<longmapsto>map_option (F_res x) (map_option (F_assert o push_prov) \<pi>'') @ \<alpha> \<prec> \<lparr>\<nu>x\<rparr>P'" using `x \<sharp> \<Psi>` `x \<sharp> \<alpha>`
by(rule Scope)
moreover have "(\<Psi>, \<lparr>\<nu>x\<rparr>P', \<lparr>\<nu>x\<rparr>P') \<in> Rel" by(rule C1)
ultimately show ?case by blast
qed
qed
qed
qed
lemma case_push_res_right:
fixes \<Psi> :: 'b
and x :: name
and Cs :: "('c \<times> ('a, 'b, 'c) psi) list"
assumes "eqvt Rel"
and "x \<sharp> \<Psi>"
and "x \<sharp> map fst Cs"
and C1: "\<And>Q. (\<Psi>, Q, Q) \<in> Rel"
shows "\<Psi> \<rhd> Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs) \<leadsto>[Rel] \<lparr>\<nu>x\<rparr>(Cases Cs)"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover from `x \<sharp> map fst Cs` have "x \<sharp> Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)"
by(induct Cs) (auto simp add: abs_fresh)
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(Cases Cs)" by(simp add: abs_fresh)
ultimately show ?thesis
proof(induct rule: sim_i_fresh[of _ _ _ _ _ Cs])
case(c_sim \<pi> \<alpha> P'')
note `\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<longmapsto>\<pi> @ \<alpha> \<prec> P''` `x \<sharp> \<Psi>` `x \<sharp> \<alpha>` `x \<sharp> P''` `bn \<alpha> \<sharp>* \<Psi>`
moreover from `bn \<alpha> \<sharp>* \<lparr>\<nu>x\<rparr>(Cases Cs)` `x \<sharp> \<alpha>` have "bn \<alpha> \<sharp>* (Cases Cs)" by simp
ultimately show ?case using `bn \<alpha> \<sharp>* subject \<alpha>` `x \<sharp> \<alpha>` `bn \<alpha> \<sharp>* Cs`
proof(induct rule: res_cases)
case(c_open M \<pi>' xvec1 xvec2 y N P')
from `x \<sharp> M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>` have "x \<sharp> xvec1" and "x \<sharp> xvec2" and "x \<sharp> M" by simp+
from `bn(M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle>) \<sharp>* Cs` have "y \<sharp> Cs" by simp
from `\<Psi> \<rhd> Cases Cs \<longmapsto>Some \<pi>' @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> P')`
show ?case
proof(induct rule: case_cases)
case(c_case \<phi> P \<pi>'')
have \<pi>': "Some \<pi>' = map_option (F_assert \<circ> push_prov) \<pi>''" by fact
then obtain \<pi>''' where \<pi>'': "\<pi>'' = Some \<pi>'''"
by(induct \<pi>'') auto
from `\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> P')`
have "([(x, y)] \<bullet> \<Psi>) \<rhd> ([(x, y)] \<bullet> P) \<longmapsto> [(x,y)] \<bullet> \<pi>'' @ ([(x, y)] \<bullet> (M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>([(x, y)] \<bullet> N)\<rangle> \<prec> ([(x, y)] \<bullet> P')))"
by(rule semantics.eqvt)
with `x \<sharp> \<Psi>` `x \<sharp> M` `y \<sharp> xvec1` `y \<sharp> xvec2` `y \<sharp> \<Psi>` `y \<sharp> M` `x \<sharp> xvec1` `x \<sharp> xvec2`
have "\<Psi> \<rhd> ([(x, y)] \<bullet> P) \<longmapsto> Some([(x,y)] \<bullet> \<pi>''') @ M\<lparr>\<nu>*(xvec1@xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" by(simp add: eqvts \<pi>'')
hence "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P) \<longmapsto> Some(\<lparr>\<nu>y\<rparr>([(x,y)] \<bullet> \<pi>''')) @ M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" using `y \<in> supp N` `y \<sharp> \<Psi>` `y \<sharp> M` `y \<sharp> xvec1` `y \<sharp> xvec2`
by(rule Open)
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto>Some(\<lparr>\<nu>y\<rparr>([(x,y)] \<bullet> \<pi>''')) @ M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'" using `y \<sharp> Cs` `(\<phi>, P) mem Cs`
by(subst alpha_res, auto dest: mem_fresh)
moreover from `(\<phi>, P) mem Cs` have "(\<phi>, \<lparr>\<nu>x\<rparr>P) mem (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)"
by(induct Cs) auto
moreover note `\<Psi> \<turnstile> \<phi>`
moreover from `guarded P` have "guarded(\<lparr>\<nu>x\<rparr>P)" by simp
ultimately have "\<Psi> \<rhd> (Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)) \<longmapsto>map_option (F_assert o push_prov) (Some(\<lparr>\<nu>y\<rparr>([(x,y)] \<bullet> \<pi>'''))) @ M\<lparr>\<nu>*(xvec1@y#xvec2)\<rparr>\<langle>N\<rangle> \<prec> P'"
by(rule Case)
moreover have "(\<Psi>, P', P') \<in> Rel" by(rule C1)
ultimately show ?case by blast
qed
next
case(c_res \<pi>' P')
from `\<Psi> \<rhd> Cases Cs \<longmapsto>\<pi>' @ \<alpha> \<prec> P'`
show ?case
proof(induct rule: case_cases)
case(c_case \<phi> P \<pi>'')
from `\<Psi> \<rhd> P \<longmapsto>\<pi>'' @ \<alpha> \<prec> P'` `x \<sharp> \<Psi>` `x \<sharp> \<alpha>`
have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto> map_option (F_res x) \<pi>'' @ \<alpha> \<prec> \<lparr>\<nu>x\<rparr>P'" by(rule Scope)
moreover from `(\<phi>, P) mem Cs` have "(\<phi>, \<lparr>\<nu>x\<rparr>P) mem (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)"
by(induct Cs) auto
moreover note `\<Psi> \<turnstile> \<phi>`
moreover from `guarded P` have "guarded(\<lparr>\<nu>x\<rparr>P)" by simp
ultimately have "\<Psi> \<rhd> (Cases (map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs)) \<longmapsto>map_option (F_assert o push_prov) (map_option (F_res x) \<pi>'') @ \<alpha> \<prec> \<lparr>\<nu>x\<rparr>P'"
by(rule Case)
moreover have "(\<Psi>, \<lparr>\<nu>x\<rparr>P', \<lparr>\<nu>x\<rparr>P') \<in> Rel" by(rule C1)
ultimately show ?case by blast
qed
qed
qed
qed
lemma res_input_cases[consumes 5, case_names c_res]:
fixes \<Psi> :: 'b
and x :: name
and P :: "('a, 'b, 'c) psi"
and M :: 'a
and N :: 'a
and P' :: "('a, 'b, 'c) psi"
and C :: "'d::fs_name"
assumes Trans: "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<longmapsto>\<pi> @ M\<lparr>N\<rparr> \<prec> P'"
and "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> N"
and "x \<sharp> P'"
and r_scope: "\<And>\<pi>' P'. \<lbrakk>\<Psi> \<rhd> P \<longmapsto>\<pi>' @ M\<lparr>N\<rparr> \<prec> P'; \<pi> = map_option (F_res x) \<pi>'\<rbrakk> \<Longrightarrow> Prop (\<lparr>\<nu>x\<rparr>P')"
shows "Prop P'"
proof -
note Trans `x \<sharp> \<Psi>`
moreover from `x \<sharp> M` `x \<sharp> N` have "x \<sharp> (M\<lparr>N\<rparr>)" by simp
moreover note `x \<sharp> P'`
moreover have "bn(M\<lparr>N\<rparr>) \<sharp>* \<Psi>" and "bn(M\<lparr>N\<rparr>) \<sharp>* P" and "bn(M\<lparr>N\<rparr>) \<sharp>* subject(M\<lparr>N\<rparr>)" and "bn(M\<lparr>N\<rparr>) = []" by simp+
ultimately show ?thesis
by(induct rule: res_cases) (auto intro: r_scope)
qed
lemma scope_ext_left:
fixes x :: name
and P :: "('a, 'b, 'c) psi"
and \<Psi> :: 'b
and Q :: "('a, 'b, 'c) psi"
and Rel :: "('b \<times> ('a, 'b, 'c) psi \<times> ('a, 'b, 'c) psi) set"
assumes "x \<sharp> P"
and "x \<sharp> \<Psi>"
and "eqvt Rel"
and C1: "\<And>\<Psi>' R. (\<Psi>', R, R) \<in> Rel"
and C2: "\<And>y \<Psi>' R S zvec. \<lbrakk>y \<sharp> \<Psi>'; y \<sharp> R; zvec \<sharp>* \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>*zvec\<rparr>(R \<parallel> S)), \<lparr>\<nu>*zvec\<rparr>(R \<parallel> \<lparr>\<nu>y\<rparr>S)) \<in> Rel"
and C3: "\<And>\<Psi>' zvec R y. \<lbrakk>y \<sharp> \<Psi>'; zvec \<sharp>* \<Psi>'\<rbrakk> \<Longrightarrow> (\<Psi>', \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>*zvec\<rparr>R), \<lparr>\<nu>*zvec\<rparr>(\<lparr>\<nu>y\<rparr>R)) \<in> Rel"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<leadsto>[Rel] P \<parallel> \<lparr>\<nu>x\<rparr>Q"
proof -
note `eqvt Rel` `x \<sharp> \<Psi>`
moreover have "x \<sharp> \<lparr>\<nu>x\<rparr>(P \<parallel> Q)" by(simp add: abs_fresh)
moreover from `x \<sharp> P` have "x \<sharp> P \<parallel> \<lparr>\<nu>x\<rparr>Q" by(simp add: abs_fresh)
ultimately show ?thesis