-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSubst_Term.thy
371 lines (293 loc) · 13.7 KB
/
Subst_Term.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
theory Subst_Term
imports Chain
begin
definition well_formed_subst :: "(('d::fs_name) list \<times> ('e::fs_name) list) list \<Rightarrow> bool" where "well_formed_subst \<sigma> = ((filter (\<lambda>(xvec, Tvec). \<not>(length xvec = length Tvec \<and> distinct xvec)) \<sigma>) = [])"
locale subst_type =
fixes subst :: "'a::fs_name \<Rightarrow> name list \<Rightarrow> 'b::fs_name list \<Rightarrow> 'a" ("_[_::=_]" [80, 80 ,80] 130)
assumes eq[eqvt]: "\<And>p::name prm. (p \<bullet> (M[xvec::=Tvec])) = ((p \<bullet> M)[(p \<bullet> xvec)::=(p \<bullet> Tvec)])"
and renaming: "\<And>xvec Tvec p T. \<lbrakk>length xvec = length Tvec; (set p) \<subseteq> set xvec \<times> set (p \<bullet> xvec);
distinct_perm p; (p \<bullet> xvec) \<sharp>* T\<rbrakk> \<Longrightarrow>
T[xvec::=Tvec] = (p \<bullet> T)[(p \<bullet> xvec)::=Tvec]"
begin
lemma supp_subst:
fixes M :: 'a
and xvec :: "name list"
and Tvec :: "'b list"
shows "(supp(M[xvec::=Tvec])::name set) \<subseteq> ((supp M) \<union> (supp xvec) \<union> (supp Tvec))"
proof(auto simp add: eqvts supp_def)
fix x::name
let ?P = "\<lambda>y. ([(x, y)] \<bullet> M)[([(x, y)] \<bullet> xvec)::=([(x, y)] \<bullet> Tvec)] \<noteq> M[xvec::=Tvec]"
let ?Q = "\<lambda>y M. ([(x, y)] \<bullet> M) \<noteq> (M::'a)"
let ?R = "\<lambda>y xvec. ([(x, y)] \<bullet> xvec) \<noteq> (xvec::name list)"
let ?S = "\<lambda>y Tvec. ([(x, y)] \<bullet> Tvec) \<noteq> (Tvec::'b list)"
assume A: "finite {y. ?Q y M}" and B: "finite {y. ?R y xvec}" and C: "finite {y. ?S y Tvec}" and D: "infinite {y. ?P(y)}"
hence "infinite({y. ?P(y)} - {y. ?Q y M} - {y. ?R y xvec} - {y. ?S y Tvec})"
by(auto intro: Diff_infinite_finite)
hence "infinite({y. ?P(y) \<and> \<not>(?Q y M) \<and> \<not> (?R y xvec) \<and> \<not> (?S y Tvec)})" by(simp add: set_diff_eq)
moreover have "{y. ?P(y) \<and> \<not>(?Q y M) \<and> \<not> (?R y xvec) \<and> \<not> (?S y Tvec)} = {}" by auto
ultimately have "infinite {}" by(drule_tac Infinite_cong) auto
thus False by simp
qed
lemma subst2[intro]:
fixes x :: name
and M :: 'a
and xvec :: "name list"
and Tvec :: "'b list"
assumes "x \<sharp> M"
and "x \<sharp> xvec"
and "x \<sharp> Tvec"
shows "x \<sharp> M[xvec::=Tvec]"
using assms supp_subst
by(auto simp add: fresh_def)
lemma subst2_chain[intro]:
fixes yvec :: "name list"
and M :: 'a
and xvec :: "name list"
and Tvec :: "'b list"
assumes "yvec \<sharp>* M"
and "yvec \<sharp>* xvec"
and "yvec \<sharp>* Tvec"
shows "yvec \<sharp>* M[xvec::=Tvec]"
using assms
by(induct yvec) auto
lemma fs[simp]: "finite ((supp subst)::name set)"
by(simp add: supp_def perm_fun_def eqvts)
(*
lemma subst1_chain:
fixes xvec :: "name list"
and Tvec :: "'b list"
and Xs :: "name set"
and T :: 'a
assumes "length xvec = length Tvec"
and "distinct xvec"
and "Xs \<sharp>* T[xvec::=Tvec]"
and "Xs \<sharp>* xvec"
shows "Xs \<sharp>* T"
using assms
by(auto intro: subst1 simp add: fresh_star_def)
*)
lemma subst4_chain:
fixes xvec :: "name list"
and Tvec :: "'b list"
and T :: 'a
assumes "length xvec = length Tvec"
and "distinct xvec"
and "xvec \<sharp>* Tvec"
shows "xvec \<sharp>* T[xvec::=Tvec]"
proof -
obtain p where "((p::name prm) \<bullet> (xvec::name list)) \<sharp>* T" and "(p \<bullet> xvec) \<sharp>* xvec"
and S: "(set p) \<subseteq> set xvec \<times> set (p \<bullet> xvec)"
and "distinct_perm p"
by(rule_tac xvec=xvec and c="(T, xvec)" in name_list_avoiding) auto
from `length xvec = length Tvec` have "length(p \<bullet> xvec) = length Tvec" by simp
moreover from `(p \<bullet> xvec) \<sharp>* T` have "(p \<bullet> p \<bullet> xvec) \<sharp>* (p \<bullet> T)"
by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `distinct_perm p` have "xvec \<sharp>* (p \<bullet> T)" by simp
ultimately have "(set xvec) \<sharp>* (p \<bullet> T)[(p \<bullet> xvec)::=Tvec]" using `xvec \<sharp>* Tvec` `(p \<bullet> xvec) \<sharp>* xvec`
by auto
thus ?thesis using `length xvec = length Tvec` `distinct xvec` S `(p \<bullet> xvec) \<sharp>* T` `distinct_perm p`
by(simp add: renaming)
qed
definition seq_subst :: "'a \<Rightarrow> (name list \<times> 'b list) list \<Rightarrow> 'a" ("_[<_>]" [80, 80] 130)
where "M[<\<sigma>>] \<equiv> foldl (\<lambda>N. \<lambda>(xvec, Tvec). N[xvec::=Tvec]) M \<sigma>"
lemma seq_subst_nil[simp]:
"seq_subst M [] = M"
by(simp add: seq_subst_def)
lemma seq_subst_cons[simp]:
shows "seq_subst M ((xvec, Tvec)#\<sigma>) = seq_subst(M[xvec::=Tvec]) \<sigma>"
by(simp add: seq_subst_def)
lemma seq_subst_term_append[simp]:
shows "seq_subst M (\<sigma>@\<sigma>') = seq_subst (seq_subst M \<sigma>) \<sigma>'"
by(induct \<sigma>) (auto simp add: seq_subst_def)
lemma well_formed_subst_eqvt[eqvt]:
fixes \<sigma> :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
and p :: "name prm"
shows "p \<bullet> (well_formed_subst \<sigma>) = well_formed_subst(p \<bullet> \<sigma>)"
by(induct \<sigma> arbitrary: p) (auto simp add: eqvts well_formed_subst_def)
lemma well_formed_simp[simp]:
fixes \<sigma> :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
and p :: "name prm"
shows "well_formed_subst(p \<bullet> \<sigma>) = well_formed_subst \<sigma>"
by(induct \<sigma>) (auto simp add: eqvts well_formed_subst_def)
lemma well_formed_nil[simp]:
"well_formed_subst []"
by(simp add: well_formed_subst_def)
lemma well_formed_cons[simp]:
shows "well_formed_subst((xvec, Tvec)#\<sigma>) = (length xvec = length Tvec \<and> distinct xvec \<and> well_formed_subst \<sigma>)"
by(simp add: well_formed_subst_def) auto
lemma well_formed_append[simp]:
fixes \<sigma> :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
and \<sigma>' :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
shows "well_formed_subst(\<sigma>@\<sigma>') = (well_formed_subst \<sigma> \<and> well_formed_subst \<sigma>')"
by(simp add: well_formed_subst_def)
lemma seq_subst2[intro]:
fixes \<sigma> :: "(name list \<times> 'b list) list"
and T :: 'a
and x :: name
assumes "x \<sharp> \<sigma>"
and "x \<sharp> T"
shows "x \<sharp> T[<\<sigma>>]"
using assms
by(induct \<sigma> arbitrary: T) (clarsimp | blast)+
lemma seq_subst2_chain[intro]:
fixes \<sigma> :: "(name list \<times> 'b list) list"
and T :: 'a
and xvec :: "name list"
assumes "xvec \<sharp>* \<sigma>"
and "xvec \<sharp>* T"
shows "xvec \<sharp>* T[<\<sigma>>]"
using assms
by(induct xvec) auto
end
locale strong_subst_type =
fixes subst :: "'a::fs_name \<Rightarrow> name list \<Rightarrow> 'b::fs_name list \<Rightarrow> 'a" ("_[_::=_]" [80, 80 ,80] 130)
assumes eq[eqvt]: "\<And>p::name prm. (p \<bullet> (M[xvec::=Tvec])) = ((p \<bullet> M)[(p \<bullet> xvec)::=(p \<bullet> Tvec)])"
and subst3: "\<And>xvec Tvec T x. \<lbrakk>length xvec = length Tvec; distinct xvec; set(xvec) \<subseteq> supp(T); (x::name) \<sharp> T[xvec::=Tvec]\<rbrakk> \<Longrightarrow> x \<sharp> Tvec"
and renaming: "\<And>xvec Tvec p T. \<lbrakk>length xvec = length Tvec; (set p) \<subseteq> set xvec \<times> set (p \<bullet> xvec);
distinct_perm p; (p \<bullet> xvec) \<sharp>* T\<rbrakk> \<Longrightarrow>
T[xvec::=Tvec] = (p \<bullet> T)[(p \<bullet> xvec)::=Tvec]"
begin
lemma supp_subst:
fixes M :: 'a
and xvec :: "name list"
and Tvec :: "'b list"
shows "(supp(M[xvec::=Tvec])::name set) \<subseteq> ((supp M) \<union> (supp xvec) \<union> (supp Tvec))"
proof(auto simp add: eqvts supp_def)
fix x::name
let ?P = "\<lambda>y. ([(x, y)] \<bullet> M)[([(x, y)] \<bullet> xvec)::=([(x, y)] \<bullet> Tvec)] \<noteq> M[xvec::=Tvec]"
let ?Q = "\<lambda>y M. ([(x, y)] \<bullet> M) \<noteq> (M::'a)"
let ?R = "\<lambda>y xvec. ([(x, y)] \<bullet> xvec) \<noteq> (xvec::name list)"
let ?S = "\<lambda>y Tvec. ([(x, y)] \<bullet> Tvec) \<noteq> (Tvec::'b list)"
assume A: "finite {y. ?Q y M}" and B: "finite {y. ?R y xvec}" and C: "finite {y. ?S y Tvec}" and D: "infinite {y. ?P(y)}"
hence "infinite({y. ?P(y)} - {y. ?Q y M} - {y. ?R y xvec} - {y. ?S y Tvec})"
by(auto intro: Diff_infinite_finite)
hence "infinite({y. ?P(y) \<and> \<not>(?Q y M) \<and> \<not> (?R y xvec) \<and> \<not> (?S y Tvec)})" by(simp add: set_diff_eq)
moreover have "{y. ?P(y) \<and> \<not>(?Q y M) \<and> \<not> (?R y xvec) \<and> \<not> (?S y Tvec)} = {}" by auto
ultimately have "infinite {}" by(drule_tac Infinite_cong) auto
thus False by simp
qed
lemma subst2[intro]:
fixes x :: name
and M :: 'a
and xvec :: "name list"
and Tvec :: "'b list"
assumes "x \<sharp> M"
and "x \<sharp> xvec"
and "x \<sharp> Tvec"
shows "x \<sharp> M[xvec::=Tvec]"
using assms supp_subst
by(auto simp add: fresh_def)
lemma subst2_chain[intro]:
fixes yvec :: "name list"
and M :: 'a
and xvec :: "name list"
and Tvec :: "'b list"
assumes "yvec \<sharp>* M"
and "yvec \<sharp>* xvec"
and "yvec \<sharp>* Tvec"
shows "yvec \<sharp>* M[xvec::=Tvec]"
using assms
by(induct yvec) auto
lemma fs[simp]: "finite ((supp subst)::name set)"
by(simp add: supp_def perm_fun_def eqvts)
(*
lemma subst1_chain:
fixes xvec :: "name list"
and Tvec :: "'b list"
and Xs :: "name set"
and T :: 'a
assumes "length xvec = length Tvec"
and "distinct xvec"
and "Xs \<sharp>* T[xvec::=Tvec]"
and "Xs \<sharp>* xvec"
shows "Xs \<sharp>* T"
using assms
by(auto intro: subst1 simp add: fresh_star_def)
*)
lemma subst3_chain:
fixes xvec :: "name list"
and Tvec :: "'b list"
and Xs :: "name set"
and T :: 'a
assumes "length xvec = length Tvec"
and "distinct xvec"
and "set xvec \<subseteq> supp T"
and "Xs \<sharp>* T[xvec::=Tvec]"
shows "Xs \<sharp>* Tvec"
using assms
by(auto intro: subst3 simp add: fresh_star_def)
lemma subst4_chain:
fixes xvec :: "name list"
and Tvec :: "'b list"
and T :: 'a
assumes "length xvec = length Tvec"
and "distinct xvec"
and "xvec \<sharp>* Tvec"
shows "xvec \<sharp>* T[xvec::=Tvec]"
proof -
obtain p where "((p::name prm) \<bullet> (xvec::name list)) \<sharp>* T" and "(p \<bullet> xvec) \<sharp>* xvec"
and S: "(set p) \<subseteq> set xvec \<times> set (p \<bullet> xvec)"
and "distinct_perm p"
by(rule_tac xvec=xvec and c="(T, xvec)" in name_list_avoiding) auto
from `length xvec = length Tvec` have "length(p \<bullet> xvec) = length Tvec" by simp
moreover from `(p \<bullet> xvec) \<sharp>* T` have "(p \<bullet> p \<bullet> xvec) \<sharp>* (p \<bullet> T)"
by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `distinct_perm p` have "xvec \<sharp>* (p \<bullet> T)" by simp
ultimately have "(set xvec) \<sharp>* (p \<bullet> T)[(p \<bullet> xvec)::=Tvec]" using `xvec \<sharp>* Tvec` `(p \<bullet> xvec) \<sharp>* xvec`
by auto
thus ?thesis using `length xvec = length Tvec` `distinct xvec` S `(p \<bullet> xvec) \<sharp>* T` `distinct_perm p`
by(simp add: renaming)
qed
definition seq_subst :: "'a \<Rightarrow> (name list \<times> 'b list) list \<Rightarrow> 'a" ("_[<_>]" [80, 80] 130)
where "M[<\<sigma>>] \<equiv> foldl (\<lambda>N. \<lambda>(xvec, Tvec). N[xvec::=Tvec]) M \<sigma>"
lemma seq_subst_nil[simp]:
"seq_subst M [] = M"
by(simp add: seq_subst_def)
lemma seq_subst_cons[simp]:
shows "seq_subst M ((xvec, Tvec)#\<sigma>) = seq_subst(M[xvec::=Tvec]) \<sigma>"
by(simp add: seq_subst_def)
lemma seq_subst_term_append[simp]:
shows "seq_subst M (\<sigma>@\<sigma>') = seq_subst (seq_subst M \<sigma>) \<sigma>'"
by(induct \<sigma>) (auto simp add: seq_subst_def)
definition well_formed_subst :: "(('d::fs_name) list \<times> ('e::fs_name) list) list \<Rightarrow> bool" where "well_formed_subst \<sigma> = ((filter (\<lambda>(xvec, Tvec). \<not>(length xvec = length Tvec \<and> distinct xvec)) \<sigma>) = [])"
lemma well_formed_subst_eqvt[eqvt]:
fixes \<sigma> :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
and p :: "name prm"
shows "p \<bullet> (well_formed_subst \<sigma>) = well_formed_subst(p \<bullet> \<sigma>)"
by(induct \<sigma> arbitrary: p) (auto simp add: eqvts well_formed_subst_def)
lemma well_formed_simp[simp]:
fixes \<sigma> :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
and p :: "name prm"
shows "well_formed_subst(p \<bullet> \<sigma>) = well_formed_subst \<sigma>"
by(induct \<sigma>) (auto simp add: eqvts well_formed_subst_def)
lemma well_formed_nil[simp]:
"well_formed_subst []"
by(simp add: well_formed_subst_def)
lemma well_formed_cons[simp]:
shows "well_formed_subst((xvec, Tvec)#\<sigma>) = (length xvec = length Tvec \<and> distinct xvec \<and> well_formed_subst \<sigma>)"
by(simp add: well_formed_subst_def) auto
lemma well_formed_append[simp]:
fixes \<sigma> :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
and \<sigma>' :: "(('d::fs_name) list \<times> ('e::fs_name) list) list"
shows "well_formed_subst(\<sigma>@\<sigma>') = (well_formed_subst \<sigma> \<and> well_formed_subst \<sigma>')"
by(simp add: well_formed_subst_def)
lemma seq_subst2[intro]:
fixes \<sigma> :: "(name list \<times> 'b list) list"
and T :: 'a
and x :: name
assumes "x \<sharp> \<sigma>"
and "x \<sharp> T"
shows "x \<sharp> T[<\<sigma>>]"
using assms
by(induct \<sigma> arbitrary: T) (clarsimp | blast)+
lemma seq_subst2_chain[intro]:
fixes \<sigma> :: "(name list \<times> 'b list) list"
and T :: 'a
and xvec :: "name list"
assumes "xvec \<sharp>* \<sigma>"
and "xvec \<sharp>* T"
shows "xvec \<sharp>* T[<\<sigma>>]"
using assms
by(induct xvec) auto
end
end