-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeak_Bisim_Pres.thy
587 lines (533 loc) · 33 KB
/
Weak_Bisim_Pres.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
(*
Title: Psi-calculi
Based on the AFP entry by Jesper Bengtson ([email protected]), 2012
*)
theory Weak_Bisim_Pres
imports Weak_Bisimulation Weak_Sim_Pres Weak_Stat_Imp_Pres
begin
context env begin
lemma weakBisimInputPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "\<And>Tvec. length xvec = length Tvec \<Longrightarrow> \<Psi> \<rhd> P[xvec::=Tvec] \<approx> Q[xvec::=Tvec]"
shows "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<approx> M\<lparr>\<lambda>*xvec N\<rparr>.Q"
proof -
let ?X = "{(\<Psi>, M\<lparr>\<lambda>*xvec N\<rparr>.P, M\<lparr>\<lambda>*xvec N\<rparr>.Q) | \<Psi> M xvec N P Q. \<forall>Tvec. length xvec = length Tvec \<longrightarrow> \<Psi> \<rhd> P[xvec::=Tvec] \<approx> Q[xvec::=Tvec]}"
from assms have "(\<Psi>, M\<lparr>\<lambda>*xvec N\<rparr>.P, M\<lparr>\<lambda>*xvec N\<rparr>.Q) \<in> ?X" by blast
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)
case(cStatImp \<Psi> P Q)
thus ?case by(fastforce intro: weak_stat_impInputPres dest: weakBisimE(3))
next
case(cSim \<Psi> P Q)
thus ?case
by auto (blast intro: weak_inputPres dest: weakBisimE)
next
case(cExt \<Psi> P Q \<Psi>')
thus ?case by(blast dest: weakBisimE)
next
case(cSym \<Psi> P Q)
thus ?case by(blast dest: weakBisimE)
qed
qed
lemma weakBisimOutputPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "\<Psi> \<rhd> P \<approx> Q"
shows "\<Psi> \<rhd> M\<langle>N\<rangle>.P \<approx> M\<langle>N\<rangle>.Q"
proof -
let ?X = "{(\<Psi>, M\<langle>N\<rangle>.P, M\<langle>N\<rangle>.Q) | \<Psi> M N P Q. \<Psi> \<rhd> P \<approx> Q}"
from assms have "(\<Psi>, M\<langle>N\<rangle>.P, M\<langle>N\<rangle>.Q) \<in> ?X" by blast
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)
case(cStatImp \<Psi> P Q)
thus ?case by auto (blast intro: weak_stat_impOutputPres dest: weakBisimE(3))
next
case(cSim \<Psi> P Q)
thus ?case
by(auto intro: weak_outputPres dest: weakBisimE)
next
case(cExt \<Psi> P Q \<Psi>')
thus ?case by(blast dest: weakBisimE)
next
case(cSym \<Psi> P Q)
thus ?case by(blast dest: weakBisimE)
qed
qed
lemma weakBisimResPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and x :: name
assumes "\<Psi> \<rhd> P \<approx> Q"
and "x \<sharp> \<Psi>"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<approx> \<lparr>\<nu>x\<rparr>Q"
proof -
let ?X = "{(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) | \<Psi> x P Q. \<Psi> \<rhd> P \<approx> Q \<and> x \<sharp> \<Psi>}"
from assms have "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X" by auto
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)
case(cStatImp \<Psi> xP xQ)
{
fix \<Psi> P Q x
assume "\<Psi> \<rhd> P \<approx> Q"
hence "\<Psi> \<rhd> P \<lessapprox><weakBisim> Q" by(rule weakBisimE)
moreover have "eqvt weakBisim" by auto
moreover assume "(x::name) \<sharp> \<Psi>"
moreover have "\<And>\<Psi> P Q x. \<lbrakk>(\<Psi>, P, Q) \<in> weakBisim; x \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> weakBisim"
by auto
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<lessapprox><(?X \<union> weakBisim)> \<lparr>\<nu>x\<rparr>Q"
by(rule weak_stat_impResPres)
}
with `(\<Psi>, xP, xQ) \<in> ?X` show ?case by auto
next
case(cSim \<Psi> xP xQ)
from `(\<Psi>, xP, xQ) \<in> ?X` obtain x P Q where "\<Psi> \<rhd> P \<approx> Q" and "x \<sharp> \<Psi>" and "xP = \<lparr>\<nu>x\<rparr>P" and "xQ = \<lparr>\<nu>x\<rparr>Q"
by auto
from `\<Psi> \<rhd> P \<approx> Q` have "\<Psi> \<rhd> P \<leadsto><weakBisim> Q" by(rule weakBisimE)
moreover have "eqvt ?X"
by(force simp add: eqvt_def weakBisimClosed pt_fresh_bij[OF pt_name_inst, OF at_name_inst])
hence "eqvt(?X \<union> weakBisim)" by auto
moreover note `x \<sharp> \<Psi>`
moreover have "weakBisim \<subseteq> ?X \<union> weakBisim" by auto
moreover have "\<And>\<Psi> P Q x. \<lbrakk>(\<Psi>, P, Q) \<in> weakBisim; x \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> weakBisim"
by auto
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<leadsto><(?X \<union> weakBisim)> \<lparr>\<nu>x\<rparr>Q"
by(rule weakResPres)
with `xP = \<lparr>\<nu>x\<rparr>P` `xQ = \<lparr>\<nu>x\<rparr>Q` show ?case
by simp
next
case(cExt \<Psi> xP xQ \<Psi>')
from `(\<Psi>, xP, xQ) \<in> ?X` obtain x P Q where "\<Psi> \<rhd> P \<approx> Q" and "x \<sharp> \<Psi>" and "xP = \<lparr>\<nu>x\<rparr>P" and "xQ = \<lparr>\<nu>x\<rparr>Q"
by auto
obtain y::name where "y \<sharp> P" and "y \<sharp> Q" and "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'"
by(generate_fresh "name", auto simp add: fresh_prod)
from `\<Psi> \<rhd> P \<approx> Q` have "\<Psi> \<otimes> ([(x, y)] \<bullet> \<Psi>') \<rhd> P \<approx> Q"
by(rule weakBisimE)
hence "([(x, y)] \<bullet> (\<Psi> \<otimes> ([(x, y)] \<bullet> \<Psi>'))) \<rhd> ([(x, y)] \<bullet> P) \<approx> ([(x, y)] \<bullet> Q)"
by(rule weakBisimClosed)
with `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` have "\<Psi> \<otimes> \<Psi>' \<rhd> ([(x, y)] \<bullet> P) \<approx> ([(x, y)] \<bullet> Q)"
by(simp add: eqvts)
with `y \<sharp> \<Psi>` `y \<sharp> \<Psi>'` have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P), \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> Q)) \<in> ?X"
by auto
moreover from `y \<sharp> P` `y \<sharp> Q` have "\<lparr>\<nu>x\<rparr>P = \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" and "\<lparr>\<nu>x\<rparr>Q = \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> Q)"
by(simp add: alpha_res)+
ultimately show ?case using `xP = \<lparr>\<nu>x\<rparr>P` `xQ = \<lparr>\<nu>x\<rparr>Q` by simp
next
case(cSym \<Psi> P Q)
thus ?case by(blast dest: weakBisimE)
qed
qed
lemma weakBisimResChainPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and xvec :: "name list"
assumes "\<Psi> \<rhd> P \<approx> Q"
and "xvec \<sharp>* \<Psi>"
shows "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>P \<approx> \<lparr>\<nu>*xvec\<rparr>Q"
using assms
by(induct xvec) (auto intro: weakBisimResPres)
lemma weakBisimParPresAux:
fixes \<Psi> :: 'b
and \<Psi>\<^sub>R :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and A\<^sub>R :: "name list"
assumes "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
and "A\<^sub>R \<sharp>* \<Psi>"
and "A\<^sub>R \<sharp>* P"
and "A\<^sub>R \<sharp>* Q"
shows "\<Psi> \<rhd> P \<parallel> R \<approx> Q \<parallel> R"
proof -
let ?X = "{(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) | xvec \<Psi> P Q R. xvec \<sharp>* \<Psi> \<and> (\<forall>A\<^sub>R \<Psi>\<^sub>R. (extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle> \<and> A\<^sub>R \<sharp>* \<Psi> \<and> A\<^sub>R \<sharp>* P \<and> A\<^sub>R \<sharp>* Q) \<longrightarrow>
\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q)}"
{
fix xvec :: "name list"
and \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assume "xvec \<sharp>* \<Psi>"
and "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q\<rbrakk> \<Longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
hence "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) \<in> ?X"
by blast
}
note XI = this
{
fix xvec :: "name list"
and \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and C :: "'d::fs_name"
assume "xvec \<sharp>* \<Psi>"
and A: "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q; A\<^sub>R \<sharp>* C\<rbrakk> \<Longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
from `xvec \<sharp>* \<Psi>` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) \<in> ?X"
proof(rule XI)
fix A\<^sub>R \<Psi>\<^sub>R
assume FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
obtain p::"name prm" where "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" and "(p \<bullet> A\<^sub>R) \<sharp>* P" and "(p \<bullet> A\<^sub>R) \<sharp>* Q" and "(p \<bullet> A\<^sub>R) \<sharp>* R" and "(p \<bullet> A\<^sub>R) \<sharp>* C"
and "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>\<^sub>R" and S: "(set p) \<subseteq> (set A\<^sub>R) \<times> (set(p \<bullet> A\<^sub>R))" and "distinct_perm p"
by(rule_tac c="(\<Psi>, P, Q, R, \<Psi>\<^sub>R, C)" in name_list_avoiding) auto
from FrR `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>\<^sub>R` S have "extract_frame R = \<langle>(p \<bullet> A\<^sub>R), p \<bullet> \<Psi>\<^sub>R\<rangle>" by(simp add: frame_chain_alpha')
moreover assume "A\<^sub>R \<sharp>* \<Psi>"
hence "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> \<Psi>)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `A\<^sub>R \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` S have "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" by simp
moreover assume "A\<^sub>R \<sharp>* P"
hence "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> P)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `A\<^sub>R \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* P` S have "(p \<bullet> A\<^sub>R) \<sharp>* P" by simp
moreover assume "A\<^sub>R \<sharp>* Q"
hence "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> Q)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R) \<sharp>* Q` S have "(p \<bullet> A\<^sub>R) \<sharp>* Q" by simp
ultimately have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<approx> Q" using `(p \<bullet> A\<^sub>R) \<sharp>* C` A by blast
hence "(p \<bullet> (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R))) \<rhd> (p \<bullet> P) \<approx> (p \<bullet> Q)" by(rule weakBisimClosed)
with `A\<^sub>R \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* P` `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R) \<sharp>* Q` S `distinct_perm p`
show "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q" by(simp add: eqvts)
qed
}
note XI' = this
have "eqvt ?X"
apply(auto simp add: eqvt_def)
apply(rule_tac x="p \<bullet> xvec" in exI)
apply(rule_tac x="p \<bullet> P" in exI)
apply(rule_tac x="p \<bullet> Q" in exI)
apply(rule_tac x="p \<bullet> R" in exI)
apply(simp add: eqvts)
apply(simp add: fresh_star_bij)
apply(clarify)
apply(erule_tac x="(rev p) \<bullet> A\<^sub>R" in allE)
apply(erule_tac x="(rev p) \<bullet> \<Psi>\<^sub>R" in allE)
apply(drule mp)
apply(rule conjI)
apply(rule_tac pi=p in pt_bij4[OF pt_name_inst, OF at_name_inst])
apply(simp add: eqvts)
defer
apply(drule_tac p=p in weakBisimClosed)
apply(simp add: eqvts)
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of p, THEN sym])
apply simp
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of p, THEN sym])
apply simp
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of p, THEN sym])
by simp
moreover have Res: "\<And>\<Psi> P Q x. \<lbrakk>(\<Psi>, P, Q) \<in> ?X \<union> weakBisim; x \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> weakBisim"
proof -
fix \<Psi> P Q x
assume "(\<Psi>, P, Q) \<in> ?X \<union> weakBisim" and "(x::name) \<sharp> \<Psi>"
show "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> weakBisim"
proof(case_tac "(\<Psi>, P, Q) \<in> ?X")
assume "(\<Psi>, P, Q) \<in> ?X"
with `x \<sharp> \<Psi>` have "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X"
apply auto
by(rule_tac x="x#xvec" in exI) auto
thus ?thesis by simp
next
assume "\<not>(\<Psi>, P, Q) \<in> ?X"
with `(\<Psi>, P, Q) \<in> ?X \<union> weakBisim` have "\<Psi> \<rhd> P \<approx> Q"
by blast
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<approx> \<lparr>\<nu>x\<rparr>Q" using `x \<sharp> \<Psi>`
by(rule weakBisimResPres)
thus ?thesis
by simp
qed
qed
{
fix \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and \<Psi>' :: 'b
assume "\<Psi> \<rhd> P \<approx> Q"
hence "\<Psi> \<rhd> Q \<approx> P" by(rule weakBisimE)
then obtain P' P'' where PChain: "\<Psi> \<rhd> P \<Longrightarrow>\<^sup>^\<^sub>\<tau> P'"
and QimpP': "insert_assertion(extract_frame Q) \<Psi> \<hookrightarrow>\<^sub>F insert_assertion(extract_frame P') \<Psi>"
and P'Chain: "\<Psi> \<otimes> \<Psi>' \<rhd> P' \<Longrightarrow>\<^sup>^\<^sub>\<tau> P''"
and "\<Psi> \<otimes> \<Psi>' \<rhd> Q \<approx> P''" using weak_stat_imp_def
by(blast dest: weakBisimE)
note PChain QimpP' P'Chain
moreover from `\<Psi> \<otimes> \<Psi>' \<rhd> Q \<approx> P''` have "\<Psi> \<otimes> \<Psi>' \<rhd> P'' \<approx> Q" by(rule weakBisimE)
ultimately have "\<exists>P' P''. \<Psi> \<rhd> P \<Longrightarrow>\<^sup>^\<^sub>\<tau> P' \<and> insert_assertion(extract_frame Q) \<Psi> \<hookrightarrow>\<^sub>F insert_assertion(extract_frame P') \<Psi> \<and>
\<Psi> \<otimes> \<Psi>' \<rhd> P' \<Longrightarrow>\<^sup>^\<^sub>\<tau> P'' \<and> \<Psi> \<otimes> \<Psi>' \<rhd> P'' \<approx> Q"
by blast
}
moreover
{
fix \<Psi> P Q A\<^sub>R \<Psi>\<^sub>R R
assume PSimQ: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
and "A\<^sub>R \<sharp>* \<Psi>"
and "A\<^sub>R \<sharp>* P"
and "A\<^sub>R \<sharp>* Q"
hence "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X"
proof -
have "P \<parallel> R = \<lparr>\<nu>*[]\<rparr>(P \<parallel> R)" by simp
moreover have "Q \<parallel> R = \<lparr>\<nu>*[]\<rparr>(Q \<parallel> R)" by simp
moreover have "([]::name list) \<sharp>* \<Psi>" by simp
moreover
{
fix A\<^sub>R' \<Psi>\<^sub>R'
assume FrR': "extract_frame R = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "A\<^sub>R' \<sharp>* \<Psi>"
and "A\<^sub>R' \<sharp>* P"
and "A\<^sub>R' \<sharp>* Q"
obtain p where "(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R"
and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'"
and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>"
and "(p \<bullet> A\<^sub>R') \<sharp>* P"
and "(p \<bullet> A\<^sub>R') \<sharp>* Q"
and S: "(set p) \<subseteq> (set A\<^sub>R') \<times> (set(p \<bullet> A\<^sub>R'))" and "distinct_perm p"
by(rule_tac c="(A\<^sub>R, \<Psi>, \<Psi>\<^sub>R', P, Q)" in name_list_avoiding) auto
from `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'` S have "\<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle> = \<langle>p \<bullet> A\<^sub>R', p \<bullet> \<Psi>\<^sub>R'\<rangle>"
by(simp add: frame_chain_alpha)
with FrR' have FrR'': "extract_frame R = \<langle>p \<bullet> A\<^sub>R', p \<bullet> \<Psi>\<^sub>R'\<rangle>" by simp
with FrR `(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R`
obtain q where "p \<bullet> \<Psi>\<^sub>R' = (q::name prm) \<bullet> \<Psi>\<^sub>R" and S': "set q \<subseteq> (set A\<^sub>R) \<times> set(p \<bullet> A\<^sub>R')" and "distinct_perm q"
apply auto
apply(drule_tac sym) apply simp
by(drule_tac frame_chain_eq) auto
from PSimQ have "(q \<bullet> (\<Psi> \<otimes> \<Psi>\<^sub>R)) \<rhd> (q \<bullet> P) \<approx> (q \<bullet> Q)"
by(rule weakBisimClosed)
with `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* Q` S'
have "\<Psi> \<otimes> (q \<bullet> \<Psi>\<^sub>R) \<rhd> P \<approx> Q" by(simp add: eqvts)
hence "(p \<bullet> (\<Psi> \<otimes> (q \<bullet> \<Psi>\<^sub>R))) \<rhd> (p \<bullet> P) \<approx> (p \<bullet> Q)" by(rule weakBisimClosed)
with `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P` `A\<^sub>R' \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* Q` S `distinct_perm p` `(p \<bullet> \<Psi>\<^sub>R') = q \<bullet> \<Psi>\<^sub>R`
have "\<Psi> \<otimes> \<Psi>\<^sub>R' \<rhd> P \<approx> Q"
by(drule_tac sym) (simp add: eqvts)
}
ultimately show ?thesis
by blast
qed
hence "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X \<union> weakBisim"
by simp
}
note C1 = this
have C2: "\<And>\<Psi> P Q xvec. \<lbrakk>(\<Psi>, P, Q) \<in> ?X \<union> weakBisim; (xvec::name list) \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>*xvec\<rparr>P, \<lparr>\<nu>*xvec\<rparr>Q) \<in> ?X \<union> weakBisim"
proof -
fix \<Psi> P Q xvec
assume "(\<Psi>, P, Q) \<in> ?X \<union> weakBisim"
assume "(xvec::name list) \<sharp>* \<Psi>"
thus "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>P, \<lparr>\<nu>*xvec\<rparr>Q) \<in> ?X \<union> weakBisim"
proof(induct xvec)
case Nil
thus ?case using `(\<Psi>, P, Q) \<in> ?X \<union> weakBisim` by simp
next
case(Cons x xvec)
thus ?case by(simp only: res_chain.simps) (rule_tac Res, auto)
qed
qed
{
fix \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and A\<^sub>R :: "name list"
and \<Psi>\<^sub>R :: 'b
assume "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
and "A\<^sub>R \<sharp>* \<Psi>"
and "A\<^sub>R \<sharp>* P"
and "A\<^sub>R \<sharp>* Q"
have "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X"
proof -
{
fix A\<^sub>R' :: "name list"
and \<Psi>\<^sub>R' :: 'b
assume FrR': "extract_frame R = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "A\<^sub>R' \<sharp>* \<Psi>"
and "A\<^sub>R' \<sharp>* P"
and "A\<^sub>R' \<sharp>* Q"
obtain p where "(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R" and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'" and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>" and "(p \<bullet> A\<^sub>R') \<sharp>* P" and "(p \<bullet> A\<^sub>R') \<sharp>* Q"
and Sp: "(set p) \<subseteq> (set A\<^sub>R') \<times> (set(p \<bullet> A\<^sub>R'))" and "distinct_perm p"
by(rule_tac c="(A\<^sub>R, \<Psi>, \<Psi>\<^sub>R', P, Q)" in name_list_avoiding) auto
from FrR' `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'` Sp have "extract_frame R = \<langle>(p \<bullet> A\<^sub>R'), p \<bullet> \<Psi>\<^sub>R'\<rangle>"
by(simp add: frame_chain_alpha eqvts)
with FrR `(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R` obtain q::"name prm"
where Sq: "set q \<subseteq> set(p \<bullet> A\<^sub>R') \<times> set A\<^sub>R" and "distinct_perm q" and "\<Psi>\<^sub>R = q \<bullet> p \<bullet> \<Psi>\<^sub>R'"
by(force elim: frame_chain_eq)
from `\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q` `\<Psi>\<^sub>R = q \<bullet> p \<bullet> \<Psi>\<^sub>R'` have "\<Psi> \<otimes> (q \<bullet> p \<bullet> \<Psi>\<^sub>R') \<rhd> P \<approx> Q" by simp
hence "(q \<bullet> (\<Psi> \<otimes> (q \<bullet> p \<bullet> \<Psi>\<^sub>R'))) \<rhd> (q \<bullet> P) \<approx> (q \<bullet> Q)" by(rule weakBisimClosed)
with Sq `A\<^sub>R \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* P` `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* Q` `distinct_perm q`
have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R') \<rhd> P \<approx> Q" by(simp add: eqvts)
hence "(p \<bullet> (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R'))) \<rhd> (p \<bullet> P) \<approx> (p \<bullet> Q)" by(rule weakBisimClosed)
with Sp `A\<^sub>R' \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* P` `A\<^sub>R' \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* Q` `distinct_perm p`
have "\<Psi> \<otimes> \<Psi>\<^sub>R' \<rhd> P \<approx> Q" by(simp add: eqvts)
}
thus ?thesis
apply auto
apply(rule_tac x="[]" in exI)
by auto blast
qed
}
note Goal = this
with assms have "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X" by blast
thus ?thesis
proof(coinduct rule: weakBisimCoinduct)
case(cStatImp \<Psi> PR QR)
{
fix xvec :: "name list"
fix P Q R
assume A: "\<forall>A\<^sub>R \<Psi>\<^sub>R. extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle> \<and> A\<^sub>R \<sharp>* \<Psi> \<and> A\<^sub>R \<sharp>* P \<and> A\<^sub>R \<sharp>* Q \<longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
{
fix A\<^sub>R \<Psi>\<^sub>R
assume "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q"
with A have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<lessapprox><weakBisim> Q" by(auto dest: weakBisimE)
}
moreover assume "xvec \<sharp>* \<Psi>"
moreover have "eqvt weakBisim" by auto
moreover note C1 C2 statEqWeakBisim
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) \<lessapprox><(?X \<union> weakBisim)> \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)"
by(rule weak_stat_impParPres)
}
with `(\<Psi>, PR, QR) \<in> ?X` show ?case by auto
next
case(cSim \<Psi> PR QR)
from `(\<Psi>, PR, QR) \<in> ?X`
obtain xvec P Q R A\<^sub>R \<Psi>\<^sub>R where PFrR: "PR = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R)" and QFrR: "QR = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)"
and "xvec \<sharp>* \<Psi>"
by auto
with `(\<Psi>, PR, QR) \<in> ?X` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) \<in> ?X" by simp
hence "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) \<leadsto><(?X \<union> weakBisim)> \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)" using `xvec \<sharp>* \<Psi>`
proof(induct xvec)
case Nil
from `(\<Psi>, \<lparr>\<nu>*[]\<rparr>(P \<parallel> R), \<lparr>\<nu>*[]\<rparr>(Q \<parallel> R)) \<in> ?X` have PRQR: "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X" by simp
from PRQR have "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q\<rbrakk> \<Longrightarrow> (\<Psi> \<otimes> \<Psi>\<^sub>R, P, Q) \<in> weakBisim"
by auto
moreover note weakBisimEqvt
moreover from `eqvt ?X` have "eqvt(?X \<union> weakBisim)" by auto
moreover note weakBisimE(2) weakBisimE(4) weakBisimE(3) weakBisimE(1)
moreover note C1 C2
ultimately have "\<Psi> \<rhd> P \<parallel> R \<leadsto><(?X \<union> weakBisim)> Q \<parallel> R" using statEqWeakBisim
by(rule weakParPres)
thus ?case by simp
next
case(Cons x xvec')
from `(x#xvec') \<sharp>* \<Psi>` have "x \<sharp> \<Psi>" and "xvec' \<sharp>* \<Psi>" by simp+
with `(\<Psi>, \<lparr>\<nu>*(x#xvec')\<rparr>P \<parallel> R, \<lparr>\<nu>*(x#xvec')\<rparr>Q \<parallel> R) \<in> ?X`
have "(\<Psi>, \<lparr>\<nu>*(xvec')\<rparr>P \<parallel> R, \<lparr>\<nu>*(xvec')\<rparr>Q \<parallel> R) \<in> ?X"
apply auto
apply(subgoal_tac "\<exists>y yvec. xvec=y#yvec")
apply(clarify)
apply simp
apply(simp add: psi.inject alpha)
apply(clarify)
apply(erule disjE)
apply(erule disjE)
apply(clarify)
apply blast
apply(clarify)
apply(clarify)
apply(simp add: eqvts)
apply(rule_tac x="[(x, y)] \<bullet> yvec" in exI)
apply(rule_tac x="[(x, y)] \<bullet> P" in exI)
apply(rule_tac x="[(x, y)] \<bullet> Q" in exI)
apply(rule_tac x="[(x, y)] \<bullet> R" in exI)
apply(clarsimp)
apply(rule conjI)
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of "[(x, y)]", THEN sym])
apply simp
apply(clarify)
apply(erule_tac x="[(x, y)] \<bullet> A\<^sub>R" in allE)
apply(erule_tac x="[(x, y)] \<bullet> \<Psi>\<^sub>R" in allE)
apply(drule mp)
apply(rule conjI)
apply(rule_tac pi="[(x, y)]" in pt_bij4[OF pt_name_inst, OF at_name_inst])
apply(simp add: eqvts)
apply(rule conjI)
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of "[(x, y)]", THEN sym])
apply simp
apply(rule conjI)
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of "[(x, y)]", THEN sym])
apply simp
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of "[(x, y)]", THEN sym])
apply simp
apply(drule_tac p="[(x, y)]" in weakBisimClosed)
apply(simp add: eqvts)
by(case_tac xvec) auto
with `\<lbrakk>(\<Psi>, \<lparr>\<nu>*xvec'\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec'\<rparr>(Q \<parallel> R)) \<in> ?X; xvec' \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> \<Psi> \<rhd> \<lparr>\<nu>*xvec'\<rparr>(P \<parallel> R) \<leadsto><(?X \<union> weakBisim)> \<lparr>\<nu>*xvec'\<rparr>(Q \<parallel> R)` `xvec' \<sharp>* \<Psi>`
have "\<Psi> \<rhd> \<lparr>\<nu>*xvec'\<rparr>(P \<parallel> R) \<leadsto><(?X \<union> weakBisim)> \<lparr>\<nu>*xvec'\<rparr>(Q \<parallel> R)" by blast
moreover note `eqvt ?X`
moreover from `eqvt ?X` have "eqvt(?X \<union> weakBisim)" by auto
moreover note `x \<sharp> \<Psi>`
moreover have "?X \<union> weakBisim \<subseteq> ?X \<union> weakBisim" by simp
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec'\<rparr>(P \<parallel> R)) \<leadsto><(?X \<union> weakBisim)> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>*xvec'\<rparr>(Q \<parallel> R))" using Res
by(rule_tac weakResPres)
thus ?case
by simp
qed
with PFrR QFrR show ?case
by simp
next
case(cExt \<Psi> PR QR \<Psi>')
from `(\<Psi>, PR, QR) \<in> ?X`
obtain xvec P Q R A\<^sub>R \<Psi>\<^sub>R where PFrR: "PR = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R)" and QFrR: "QR = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)"
and "xvec \<sharp>* \<Psi>" and A: "\<forall>A\<^sub>R \<Psi>\<^sub>R. (extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle> \<and> A\<^sub>R \<sharp>* \<Psi> \<and> A\<^sub>R \<sharp>* P \<and> A\<^sub>R \<sharp>* Q) \<longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q"
by auto
obtain p where "(p \<bullet> xvec) \<sharp>* \<Psi>"
and "(p \<bullet> xvec) \<sharp>* P"
and "(p \<bullet> xvec) \<sharp>* Q"
and "(p \<bullet> xvec) \<sharp>* R"
and "(p \<bullet> xvec) \<sharp>* \<Psi>'"
and S: "(set p) \<subseteq> (set xvec) \<times> (set(p \<bullet> xvec))" and "distinct_perm p"
by(rule_tac c="(\<Psi>, P, Q, R, \<Psi>')" in name_list_avoiding) auto
from `(p \<bullet> xvec) \<sharp>* P` `(p \<bullet> xvec) \<sharp>* R` S have "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> (P \<parallel> R))"
by(subst res_chain_alpha) auto
hence PRAlpha: "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> R))"
by(simp add: eqvts)
from `(p \<bullet> xvec) \<sharp>* Q` `(p \<bullet> xvec) \<sharp>* R` S have "\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> (Q \<parallel> R))"
by(subst res_chain_alpha) auto
hence QRAlpha: "\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> Q) \<parallel> (p \<bullet> R))"
by(simp add: eqvts)
from `(p \<bullet> xvec) \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>'` have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> R)), \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> Q) \<parallel> (p \<bullet> R))) \<in> ?X"
proof(rule_tac C2="(\<Psi>, (p \<bullet> P), (p \<bullet> Q), R, \<Psi>', xvec, p \<bullet> xvec)" in XI', auto)
fix A\<^sub>R \<Psi>\<^sub>R
assume FrR: "extract_frame (p \<bullet> R) = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* \<Psi>'" and "A\<^sub>R \<sharp>* (p \<bullet> P)" and "A\<^sub>R \<sharp>* (p \<bullet> Q)"
from FrR have "(p \<bullet> (extract_frame (p \<bullet> R))) = (p \<bullet> \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>)" by simp
with `distinct_perm p` have "extract_frame R = \<langle>p \<bullet> A\<^sub>R, p \<bullet> \<Psi>\<^sub>R\<rangle>" by(simp add: eqvts)
moreover from `A\<^sub>R \<sharp>* \<Psi>` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> \<Psi>)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S have "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" by simp
moreover from `A\<^sub>R \<sharp>* (p \<bullet> P)` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> p \<bullet> P)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `distinct_perm p` have "(p \<bullet> A\<^sub>R) \<sharp>* P" by simp
moreover from `A\<^sub>R \<sharp>* (p \<bullet> Q)` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> p \<bullet> Q)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `distinct_perm p` have "(p \<bullet> A\<^sub>R) \<sharp>* Q" by simp
ultimately have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<approx> Q" using A by blast
hence "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> (p \<bullet> \<Psi>') \<rhd> P \<approx> Q" by(rule weakBisimE)
moreover have "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> (p \<bullet> \<Psi>') \<simeq> (\<Psi> \<otimes> (p \<bullet> \<Psi>')) \<otimes> (p \<bullet> \<Psi>\<^sub>R)"
by(metis Associativity Commutativity Composition Assertion_stat_eq_trans Assertion_stat_eq_sym)
ultimately have "(\<Psi> \<otimes> (p \<bullet> \<Psi>')) \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<approx> Q"
by(rule statEqWeakBisim)
hence "(p \<bullet> ((\<Psi> \<otimes> (p \<bullet> \<Psi>')) \<otimes> (p \<bullet> \<Psi>\<^sub>R))) \<rhd> (p \<bullet> P) \<approx> (p \<bullet> Q)"
by(rule weakBisimClosed)
with `distinct_perm p` `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S show "(\<Psi> \<otimes> \<Psi>') \<otimes> \<Psi>\<^sub>R \<rhd> (p \<bullet> P) \<approx> (p \<bullet> Q)"
by(simp add: eqvts)
qed
with PFrR QFrR PRAlpha QRAlpha show ?case by simp
next
case(cSym \<Psi> PR QR)
thus ?case by(blast dest: weakBisimE)
qed
qed
lemma weakBisimParPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<approx> Q"
shows "\<Psi> \<rhd> P \<parallel> R \<approx> Q \<parallel> R"
proof -
obtain A\<^sub>R \<Psi>\<^sub>R where "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q"
by(rule_tac C="(\<Psi>, P, Q)" in fresh_frame) auto
moreover from `\<Psi> \<rhd> P \<approx> Q` have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<approx> Q" by(rule weakBisimE)
ultimately show ?thesis by(rule_tac weakBisimParPresAux)
qed
end
end