forked from akuchotrani/TableauGettingStarted
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndySectionPrediction.twb
785 lines (784 loc) · 44 KB
/
IndySectionPrediction.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 10300.17.0728.2252 -->
<workbook original-version='10.3' source-build='10.3.2 (10300.17.0728.2252)' source-platform='win' version='10.3' xmlns:user='http://www.tableausoftware.com/xml/user'>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Indy500_2017_2' inline='true' name='federated.1k0mkph0tqfy191b9y2gj1xry3dj' version='10.3'>
<connection class='federated'>
<named-connections>
<named-connection caption='Indy500_2017_2' name='textscan.0vt5dcb0qvjv5e1gz1jl61480kk4'>
<connection class='textscan' directory='C:/Users/aakash.chotrani/Desktop/Indianapolis Json File' filename='Indy500_2017_2.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.0vt5dcb0qvjv5e1gz1jl61480kk4' name='Indy500_2017_2.csv' table='[Indy500_2017_2#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='integer' name='Lap' ordinal='0' />
<column datatype='real' name='S1' ordinal='1' />
<column datatype='real' name='S2' ordinal='2' />
<column datatype='real' name='S3' ordinal='3' />
<column datatype='real' name='S4' ordinal='4' />
<column datatype='real' name='S5' ordinal='5' />
<column datatype='real' name='S2A' ordinal='6' />
<column datatype='real' name='S2B' ordinal='7' />
<column datatype='real' name='S3A' ordinal='8' />
<column datatype='real' name='S3B' ordinal='9' />
<column datatype='real' name='S4A' ordinal='10' />
<column datatype='real' name='S4B' ordinal='11' />
<column datatype='real' name='S5A' ordinal='12' />
<column datatype='real' name='S5B' ordinal='13' />
<column datatype='real' name='S1_Projected' ordinal='14' />
<column datatype='integer' name='S2_Projected' ordinal='15' />
<column datatype='integer' name='S3_Projected' ordinal='16' />
<column datatype='integer' name='S4_Projected' ordinal='17' />
<column datatype='integer' name='S5_Projected' ordinal='18' />
<column datatype='real' name='S2A_Projected' ordinal='19' />
<column datatype='real' name='S2B_Projected' ordinal='20' />
<column datatype='real' name='S3A_Projected' ordinal='21' />
<column datatype='real' name='S3B_Projected' ordinal='22' />
<column datatype='real' name='S4A_Projected' ordinal='23' />
<column datatype='real' name='S4B_Projected' ordinal='24' />
<column datatype='real' name='S5A_Projected' ordinal='25' />
<column datatype='real' name='S5B_Projected' ordinal='26' />
</columns>
</relation>
<metadata-records>
<metadata-record class='column'>
<remote-name>Lap</remote-name>
<remote-type>20</remote-type>
<local-name>[Lap]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>Lap</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S1</remote-name>
<remote-type>5</remote-type>
<local-name>[S1]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S1</remote-alias>
<ordinal>1</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S2</remote-name>
<remote-type>5</remote-type>
<local-name>[S2]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S2</remote-alias>
<ordinal>2</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S3</remote-name>
<remote-type>5</remote-type>
<local-name>[S3]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S3</remote-alias>
<ordinal>3</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S4</remote-name>
<remote-type>5</remote-type>
<local-name>[S4]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S4</remote-alias>
<ordinal>4</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S5</remote-name>
<remote-type>5</remote-type>
<local-name>[S5]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S5</remote-alias>
<ordinal>5</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S2A</remote-name>
<remote-type>5</remote-type>
<local-name>[S2A]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S2A</remote-alias>
<ordinal>6</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S2B</remote-name>
<remote-type>5</remote-type>
<local-name>[S2B]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S2B</remote-alias>
<ordinal>7</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S3A</remote-name>
<remote-type>5</remote-type>
<local-name>[S3A]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S3A</remote-alias>
<ordinal>8</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S3B</remote-name>
<remote-type>5</remote-type>
<local-name>[S3B]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S3B</remote-alias>
<ordinal>9</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S4A</remote-name>
<remote-type>5</remote-type>
<local-name>[S4A]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S4A</remote-alias>
<ordinal>10</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S4B</remote-name>
<remote-type>5</remote-type>
<local-name>[S4B]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S4B</remote-alias>
<ordinal>11</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S5A</remote-name>
<remote-type>5</remote-type>
<local-name>[S5A]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S5A</remote-alias>
<ordinal>12</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S5B</remote-name>
<remote-type>5</remote-type>
<local-name>[S5B]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S5B</remote-alias>
<ordinal>13</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S1_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S1_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S1_Projected</remote-alias>
<ordinal>14</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S2_Projected</remote-name>
<remote-type>20</remote-type>
<local-name>[S2_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S2_Projected</remote-alias>
<ordinal>15</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S3_Projected</remote-name>
<remote-type>20</remote-type>
<local-name>[S3_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S3_Projected</remote-alias>
<ordinal>16</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S4_Projected</remote-name>
<remote-type>20</remote-type>
<local-name>[S4_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S4_Projected</remote-alias>
<ordinal>17</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S5_Projected</remote-name>
<remote-type>20</remote-type>
<local-name>[S5_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S5_Projected</remote-alias>
<ordinal>18</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S2A_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S2A_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S2A_Projected</remote-alias>
<ordinal>19</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S2B_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S2B_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S2B_Projected</remote-alias>
<ordinal>20</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S3A_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S3A_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S3A_Projected</remote-alias>
<ordinal>21</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S3B_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S3B_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S3B_Projected</remote-alias>
<ordinal>22</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S4A_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S4A_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S4A_Projected</remote-alias>
<ordinal>23</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S4B_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S4B_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S4B_Projected</remote-alias>
<ordinal>24</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S5A_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S5A_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S5A_Projected</remote-alias>
<ordinal>25</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>S5B_Projected</remote-name>
<remote-type>5</remote-type>
<local-name>[S5B_Projected]</local-name>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias>S5B_Projected</remote-alias>
<ordinal>26</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Indy500_2017_2.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column aggregation='Sum' datatype='integer' name='[Lap]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column aggregation='Sum' datatype='real' name='[S1]' role='dimension' type='ordinal' />
<column caption='S1 Projected' datatype='real' name='[S1_Projected]' role='measure' type='quantitative' />
<column caption='S2A Projected' datatype='real' name='[S2A_Projected]' role='measure' type='quantitative' />
<column caption='S2B Projected' datatype='real' name='[S2B_Projected]' role='measure' type='quantitative' />
<column caption='S2 Projected' datatype='integer' name='[S2_Projected]' role='measure' type='quantitative' />
<column caption='S3A Projected' datatype='real' name='[S3A_Projected]' role='measure' type='quantitative' />
<column caption='S3B Projected' datatype='real' name='[S3B_Projected]' role='measure' type='quantitative' />
<column caption='S3 Projected' datatype='integer' name='[S3_Projected]' role='measure' type='quantitative' />
<column caption='S4A Projected' datatype='real' name='[S4A_Projected]' role='measure' type='quantitative' />
<column caption='S4B Projected' datatype='real' name='[S4B_Projected]' role='measure' type='quantitative' />
<column caption='S4 Projected' datatype='integer' name='[S4_Projected]' role='measure' type='quantitative' />
<column caption='S5A Projected' datatype='real' name='[S5A_Projected]' role='measure' type='quantitative' />
<column caption='S5B Projected' datatype='real' name='[S5B_Projected]' role='measure' type='quantitative' />
<column caption='S5 Projected' datatype='integer' name='[S5_Projected]' role='measure' type='quantitative' />
<layout dim-ordering='alphabetic' dim-percentage='0.132075' measure-ordering='alphabetic' measure-percentage='0.867925' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='Indy500_2017_2' name='federated.1k0mkph0tqfy191b9y2gj1xry3dj' />
</datasources>
<datasource-dependencies datasource='federated.1k0mkph0tqfy191b9y2gj1xry3dj'>
<column aggregation='Sum' datatype='integer' name='[Lap]' role='dimension' type='ordinal' />
<column aggregation='Sum' datatype='real' name='[S1]' role='dimension' type='ordinal' />
<column caption='S1 Projected' datatype='real' name='[S1_Projected]' role='measure' type='quantitative' />
<column-instance column='[Lap]' derivation='None' name='[none:Lap:qk]' pivot='key' type='quantitative' />
<column-instance column='[S1]' derivation='Sum' name='[sum:S1:qk]' pivot='key' type='quantitative' />
<column-instance column='[S1_Projected]' derivation='Sum' name='[sum:S1_Projected:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[sum:S1_Projected:qk]' field-type='quantitative' fold='true' scope='rows' type='space' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[:Measure Names]' />
</encodings>
</pane>
<pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[sum:S1:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[:Measure Names]' />
</encodings>
</pane>
<pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[sum:S1_Projected:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[:Measure Names]' />
</encodings>
</pane>
</panes>
<rows>([federated.1k0mkph0tqfy191b9y2gj1xry3dj].[sum:S1:qk] + [federated.1k0mkph0tqfy191b9y2gj1xry3dj].[sum:S1_Projected:qk])</rows>
<cols>[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[none:Lap:qk]</cols>
</table>
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='1' param='[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[:Measure Names]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[:Measure Names]</field>
<field>[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[none:Lap:ok]</field>
<field>[federated.1k0mkph0tqfy191b9y2gj1xry3dj].[none:S1:ok]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Sheet 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO2deYxkx33fP/XOPubuufa+SC53uVyKhyRSFCVZcRxFkGwnkJ3E8BUjCZwA
SWAosBzEgGFEDhLEjmEbiQHHsGFFtiPZESArthWZOkxJPCSSS3K5u9xd7n3OPdPnu6oqf7ye
2Zmdq99Mizutqc9fM93vV+919/u9ql/Vt34/obXWGAzbFAfA+IBhu+LM/1GtVjMZSilJkgTf
9zd8cikltm0b+21qr5RCCIEQ4p6cX0qJ2OgQKEkSoiiiUChs+AKSJMFxnPUPNPbfl/ZSSizL
2rADtOP6rQ1bGwzfBxgHMGxrjAMYtjXGAQzbGuMAhm2NcQDDtqYtDlALIp59+WI7mjIY3lHa
4gCNMOGVc7fa0ZTB8I5ihkCGbU1LDqCSkHPnL1KvzHDq5JuEaun7UioSqVY2Nhi2MC2tI1uO
T09XHsfx6BkYxBWaRKkFPVCcJCilSJIk08k3YmPsv7/sNyPEbMf5W3IAFQdMTk0RRhFhFCPV
KJZlYds2juNgWzYaMusy7rUWxdgbLVBrPYCb49ixY3cZ3/lbaW2GQIaOpC1BsLn5DZ1K22aB
ksQ4gaHzaIsDKK0xe8oMnUibhkAapYwLGDqP9g2BTBxg6EDa5ADm6W/oTNriAHFiVoINnUnb
hkAmtYqhE2mLA2jMIMjQmbQshrt0+RpBrcKN2+PL3o8TSZzItl+cwfC9pmUxXN53yBW7scpV
tNaoRWI4JRVojBjO2Ge27xgx3K3bt0EIbo+NMzA0gr1IDGfZFolSRgxn7DPRUWK4Rx99FIDR
0dGm8Z1ZHyk1JgY2dCJtkkIolPEAQwdiVoIN25q2OICU5ulv6Eza4wBao82mGEMH0saV4Ha1
ZDC8c7RpCJQ++Y0cwtBptG9DjNZIsyfA0GGYxFiGbU17egClUVojlQmCDZ1FSw6glWRsfJIk
rHP56o1lys+F2R8zAjJ0GC0KKTRhGHB7vE7RUlQiTY5FYjil0BriJCFJWu9UtoIYy9gbMdy6
aJlw+9ZNhgYHmarUObJTYKlFYjjLQmuNEFYmcdK9FmMZeyOGa1kM9573vGep8aLhvtkLYOhU
2jYLpMw0qKEDaduWSIHApMcydBptywrhOpaZBTJ0HG0bAtm2ZYZAho7DrAQbtjVtGgJJcp5j
5NCGjqNtPcAGp3INhntK2xzAEsLIoQ0dR9tmgXzXMUGwoePI5AAqiZkrV1d4x9z4hs4kk5Di
5vUrjE/McPjRJ/Cam2DmBU2uYxHFqTCuVebtN4qx72z7eduNaoHacf2ZeoDBoWE0YN91vYnU
OLaZUd3SJMGW27gthNjwzd8uMvUArpfjwYeOkbMFiU4vfl4JalsWWoNlZZNDZzne2G/cPvjm
r+Pc94M4+953T86/EqmCeONO0Jbrz2Jgux7FQn7F91wnzQ9q2HpoGZNc/hby1httbVddexEd
1dva5jtNe4rkKTMEaifxua+Q3Hi1be2p6UvYg4dRU2+3rU0AefavUNXbbW3znaZte4I91yY2
tYLbgpq51NabNbn0DZwHP4puzLStTQBkCDJub5vvMO1bCcYsBbeNuIEOym1pSmuNvHUSZ9/T
CL+rvU6QRMYBIP2SHVuYWsFtQkc1dGO6PY3FDZAhIteDVbofOXWhPe0CWsVoZRwApTSuY5sg
uE3oJEA3ZtvSlqrcxOrbC4BVug81fqYt7QJN5zIOYGg3cR1dn2pPW0EZ4fcAYA8fQU2ea0+7
gJYRqI1nZdgKtG1LpAmC24eOA3Qw1xZxoQ7KCL8bANE9iqrc2nSbCyQmCAbS5LiOZW25lcaO
RSuwHNCbz7ahoyo0ewBsDywHHcxtul0AZIg2DpAihJHEtQ2tELYDqg0OEJYRudQBhBDYo8eR
k+fSeg4nPrOp2SadRLCdguCxG1c48eprhCuMdBzbDIHahlZg+yCjzTe1aAgEYA8/iLz+MkRV
4u/+T5JrL23wEpPUQTs8BsikBdKAhSKRGqHvpEaMpcQSoJTMlKpuK6Tm24r2WilE1yBJbRph
ryw9afX8qjGLcIt3jht+GHn6S0TXT2DtfT/xxecQB34g+8XLCK0SZBQgNvgddExqxHkGBko0
You8I1DyTmpEIQS+5yA1JjViG+wjNFaxhBWVsZ19mzp/kgQ4uW6s5nG6OACNafSlr+M++pMk
L/w2tgXCyvY5tI4QWmGJ7PWh59kKqREzDYG8fBcH9u/BWu16TRCwaXQSge1iFQbQjVl0VEfN
Xt14e2EFvK6F/4VlI/r2IK+/jDV0GKt0CDWxgalRmaTDIBMEp+nRPdc2WyLbgQwRjg+5XnR9
iuTiN4he/V8bbk5HVcQiBwCwR49j73sKLAd775PIay9mb1cl6SyVcYAUx7ZMgYw2oJMAnBxW
fgAdzCHHTm14UUxrDTJGuLklr7tHfxT/ff8aAGf3u0muvJC9cSXB9o0UwtBmkrQHEMVBdH0K
NX4KXZvcWLCoV34gCce7MzPkdSG8Iqo6lrHtBJwcyM6eBWqbFsj3HJMmvQ3oJATHR3jdqNpE
epNZ9qo389qNKRBr/8RCCOwDzyCz9gJKpgtrHT4N2jY16KqBsSEbcR3h5iHXg7z2HezBB8B2
N+YA6NR51sHZ/wzJxW9kazkJwetO9UAdTFv3A5ggePPoOAAnj8j1ocMK1ugxsNyNLYrFwbLx
/0qIQgkdVrNJJGQEXtEEwQBSaXzPzAK1hWYPICwLkevB3vkoVnEQXZvM3JQOy7BoFXg1hGVj
73wEOXm+9caTMO2pjAOkGjizI6w96CQAN1399Z/5d4h8KX1Cb2CDjA4rC1Lo9RB+T+owrbYt
o3R9QZsYAADXsU0Q3AbSefsiAO7hj6Q9QXEIVR3P3lZYWaIDWhPHy/Y0T0KEV0jXAzqYTA5Q
npnkxKsnCO+6z5XWWCYKbg/NGGAxIt+/oR1iOphD5HpbOlbYfqrvb7VtGabX2eES+ExCip6+
EqWhBp6lieM7YjgpFZbQJIkRw23WXoUVrL79S17XhUHk+Jnlx65zfhWUwcmvesxie2V5ae/T
4udRUbpgp+vJhr+DjhPDSRnR119ayAi3WAznuQ7KiOE2bS9liOXll7yuiiVUOLfs2PXOr6IK
Vv/+VY9ZbK9dHx3Otvx5tI4RXgFBZ4vhMlnbjk9P1/LXldZYpkJGW9BxgHALS14ThRK6nj2d
iQ7K4Lc4BHL8TLu79PwsUIfLX8xK8FYjqvK3pyc5eXFR0Ot3o8Pse4R1VFsIqNfFyaGTRuuN
ywjcAroN2zbvJas6QGVqms5e4+tMdBIwUVNcuHFn2lMIASK7HEKHlZYdQNhuplmgtAfIbXCF
euuwbAg0e/0tvvb6ddTkJD/0M/8Yb50G0gy/6Y9k1sE2j44bRLbL9NRdhUgW9EDrSxsWiGoZ
pkFz6Sp0qyQRwi22Zd/yvWRZD+AV+njqiYfo2bOXVp4dWqc3v2tbpkpkO1CSMFGMzSx1AOEW
0gwPGdBxDbzC+gdCqjfKIm2WYbpg9/02BApqNV747kl2lrrp7CWOTkUTJpqJ2fqSVJMi1wsZ
MjhorUElLW91TNcBWh/03gmCO9sBln07br6Pp977OKODAy2JG3RzH6TrWCYIbgdaESXpsDKR
Cm9ezekV0HGWXPw6jRtaxd1AEOzkOz4GWD4Eylt859vf5Ktf+xatdIhaY6TQ7UQrwkRR6i1Q
qd9ZmRVOPi1z1HI7GjLos4TlZtL26yRAOB5YNrqDe4FlDuAX+9k1XCKqVcni27ZlGTVoO9CK
WMLe4V7GZmp3Xs8apKbBWevHC5Htaa5Vc69BRrstxorToPc/cB87DhxYdwboDgLbEmZP8CbR
SQiWiwZ2lLq4NVVZeE84Xhp4tt5aRgewsy1qqSRN37jR3WpbhBUd4OKFC1Tn5pYFwdWZSc6+
fXlJzzA/DYrApEXZLDJCOD5KaXYP9XB94o4D4HWho9rqtiu0he22fryw0FluZCVTpxFWRzvA
ilMEUip83182gpyamUVHAfVQ4olUDCekRGuNVgqZUZy0FcVo99JehzW07aGUZqA7x8RsdeF9
LVxU1FgiVlvr/DqorCmEW2av01QnrX4eJRMUAo2FjCMQGZxt0fm3pBgu5wheOnmGR979riUH
7Bgd4dL1MXzXQiiNbdvYlo0lBLZtI4QwYrhN2CudIJubYUYGupirhgvfq/YL6NrEkuPXOr+S
IdIrrnl9S8RwIr2dW/08kU6wHQ9l2diWQGzge9gKYrgVh0BDu/Yy1L98J5FX6ObwA/fhLpr2
ma/1CsKMgDaJljHYLkprbNuimPf4jc+9wOVbs2myrCx6/bje+iIYZJda6OY0a9bgeYuxzAFq
U7dRtoPfN0CWTk0I2lLQYVsjQ5RwU7m5EHzqJ57mH37gCJ/5yuvg5rOtAyRBOnW6AmevTvLa
+bvKmworYxAs0wA4a+ywxVjmAFGjzouvnGHPYHdL6wDzCDBB8CbRcYPEyuE2ay4LITi4sx+t
IVJ2tpXaqAZekTiRfOuNq1wZm0VrjdKaP3n2Tb5+4tKS44UQYFktbXFMb3idOo1ld7QcYtkA
qn/3Qf7B7oMtNzC/HVIIYXqAzZKExDi4ztIV3Pt3D/Dm1SmOy9bXAXTcQDg5vvvWTV44dZ2X
z1r0deV4+uE9lHryjM3Ulu9mtJpFOdaTTyh5J+FWh88CmdSIWwgd14mFj+cu/VmeOLyT1y/P
ZIoBiOsIr8DrF8b4xIeO8m8/8V7iRPGbn3+Rj73vAYb6CozPLp1WTSXRLfQyi50k6/rBFqNt
DmBZRg69aZKQSNl4d81sHNzZz8WJBirOMgSqo+w8V8fm2DvSgxCCf/rRd/HPPvYYB3f2c9/u
Ac5duyvprrBby/Kgk4WMcyKrinSLsWkHmJdDN//bbHPbGh03kFYO11n6szi2Rf/oPsoZdijp
uMG1mZidpW5sy1po57EHdgBwdN8Q567dlWvI9lpLdqvkHZWp7XZ0obw2pkY0t/+miRvEwl0W
AwD0deWYCzOoO+Mar1+t8MSDO1d8e9dgN9cnK0tftOyWEl1pldyJAaxsO8m2Gm2sEik6PUXM
PUcnAYFyyXnLb3TPsYkzDoHO3KxzZN/giu/7nkMx5/Ly2ZsLkxfCbjE51uIYoEWn2aq0YQik
M2muDGsgQ2K9fBYIIO+71OMMay1JQC1Ke47V+PkffoyX37rJZ//mZPqC5bQ2nFnkAML207JO
HUomBwjK05w5f4nFs76p6lyYhbA2oKMGER6+u3wa0nMt4jih1YGmStL8QmvRlff45x9/jLeu
ThJESTM9Ygs3s4wQtsdLZ25Si3VHD4EyCSnqtTpKSZRqit+kRDXn/+dfN2K4jdvrqE5D2LiO
WNaua1sEsUQmd8bfa51fhVVwC+uK4Szg8J4BXjt/i0eEg4wa6HU+k44DtGXzzTeuMtgV0JVE
G/oetqwYbjW8QgFruozSAruZGQ4sLEtg2w5CmMxwm7GPZUji+uR9b1m7hZxHkKQCRNGcglzz
/HGA5eZbEsM9c3wfX/r2OR7dXcDS638mqROEk6MRxoQFC2uD2eG2rBhuNbp6Bzjy0FH8RUPU
NDU6WCYtyuaRIaGy8d3lMYDv2oSJppUhkNYaLSMs12/ptHuGexmbqRJKq6XFNh3VEH4XlXpE
IO00UW6HYlaCtxA6bhBql5y3Qgzg2ERx0mI25vlUBa09WR3b4oE9g1wYq7VU8kiHZYTfTS2I
CRLR0THAph1AKoVtWyYIbgdaEyUab4VZoJzvEMQtfr9aozLuiCz15JlrqNZ6gKBM4nQTRAmR
1B2dGmXTDqBUmhjXrAO0gzQjhL/COoDvOkTahbi11CVRnKw4m7QaXQWPemK3NgsUVYlEjiiW
BIno6FrBbR0CCZGqQw0bRKU5gVacBnVsIty0hNK6pMm17pZUrEXBd6lLK92Yv17rwRyxnaYJ
3/ZDoMXVYWzLWpLNzJARrQhitXIM4NrEuK0pQpUkjBV5v/UtTcWcSz0WLWWe0GGFUOTpKXoE
cps7QCIVjm1i6bagFVGiVowBfM8mxGutB5AhoXJWdKTVKOY9arFoaVVXhxUa5Ogr+oQJ2zsG
WNKYJUwPsEG01qDToYu3Qgzg2jaxdloLUuOAWHh4GYZAxZxLrcUegCRiLtAM9RUJpGWmQecx
McAmkBE4XjPV5PLpG9+1ifHQLQTBOqoRaJ9chiFQznMIld1aD5AE1BOLUk+eSFnbewgUJ2pB
vGW2RW4CGadZ4VYRF/qeQ4gHrSSwjWpEwl9xQW01bMtCCre1HkCGVENNf3eOWIltNATSmqmp
1SuW28IMgTaKbgrM1qq3Jtxca0/oeF5Ul8EB7KYDrDPESneMCWqxpqeYQ2J39DRoJiFFUJvj
wpUbDAyUUE0xnJQSrVNRktZ6oXRqK2w1Mdq9tNdRA227KKWbry9/kAjHR0b1hexwq51fhhUC
5VF0rAyZ4TQJDioO1v5MSQNtOZRrIYd29BLjoNezWeP8HSWGK1eqRI0qYaJwmmI4qWM818Fx
HBwnzRPTqkBpq4nR7qW90gnS8dGA6zgrFh633Dwk4YLNaufXMiQUPoO55aK61c7vADh5tIzX
Lr0aJ1hunnqY0N9dQGIjWhDQrcRWEMNlsh7esZvhHbsXjFdCm42RGyKtvJ5bc4ORcHJouX4M
oCq3iP1SpiEQQC6XI5R67dJYSQiOT1hN6Mp7xEqgTVaIZmOiRa2WYTlJgBQu9hpPROH6LdUI
0OWbxPnRTFIIAN/3ieK1b+b50qthlOC7NrbjIFvZSL9F2fwsUHV6YRbIMivBG0YnITHumvIF
4RbWXQjTWqMqt4lyQ5kdIJfLNSXXa7QflhF+D7FUuK6N7fhIuV1mgVYgfvvZDIV4DKvSwsyN
69jNbZFroZvToDm8DQyB1lWcBmW014VUGte2cDy/o6uDbtoBrP4Dd/4206AbRscB9VhQzK1e
lyfnOQTROk9blYDtEsUycwyQz7k01vEvHZZJ7OJC/lLH9Tq6NNbmxXAD9zPfa1tmJXjjJA3K
sU13cfVdXL7rECbrjNHrU4j8AFGcZO4BFuQQa7UfVgit4kLbjp8n6eDqoJtPi+IWoHITMCvB
m0EnIdVI0F1YvQfwPZtwnSGQmr2G1b+PKJEriurWouC7NIJwzV1haQ9QWOhdHMclqs12bKXI
tswCqam308YsYXqAjRI3mIss+oqr5/HxHJt4vR6gfAOrZydBJFfcWLMWXQWPqi4gL39r9faD
Mg1RXJBa5zyH2Mqjpi9mOtdWYfNbIqVGzF1paSOFYXV0EjAXrJ3IKu+71BvBmr2smr2G6NmN
UnohJ2irFHyX+OBHiU//xarn0EGZqvLpaQ7V8r5DvPsDyCvPZzrXVqEtWyJFVEZXx1I9iUy/
OC3jbHVttztJwGygF26slfAci3D6GmrqwqrHqMotRM/K+UDXo5hzaXiDYHvIay+ljnB3VRoZ
MlNXC9fpuw7xyOMk17+zJSrFZL2GTA4gk5hqbXmZHuH3omauNBPkarTWRN/5PYIv/9KW+FIW
o7VG1adaSwP+DqLjBnOhtWYP4HsO6sgniF7+gxWf0FprdGUMURhcUUqxHoWcSz2I8R77KeLT
X0RNnSd66feWniMJmWloBrrTrHN53yG0Cggnj66MZT5nK2itUdVx1Nz1tY8LKzS+8PPINR4Q
d5NppSQK6rx1+jwPP/E4lk5vdKkUzuAh5OR5hDiOVAo1fRE5dhrRvYPk0nPY+z+w+gcLyuD4
aZbhjKQZ6RY52HzwZt8VSGrZlOxq5PlnCU98Fqt7FPcDn0L1jLBm+pColtr7y4sGLjt/K4Rl
knNfRhRKsPu9KOWkdbbiRnMXl71qm75rEw0cQV/7a+TNE+iB+5HlCQgqiJGjUJ9Ca4lalDlu
Le6+/kLOpVKPEMOP4f/Qr4GWBH/5SeTEOUTpPnT5BjooM2Mr7u9OZRu+axOEMfZ9P0j44u/i
f/iXIW6QXHiW5OLf4t7/Q9iHP5qeQMUkJ/8M+9CHEcXh9O/+fVh7nkSNnURe+DoIG1EsYY8+
jBh+KN2A/+LvImevIdB4j/008ekvgkpw3v9JVNfQnZ/qO7+PvfdJgq99mvzf+3SavzTXfyeR
r4wgrqPG3kwD/b3vz+YAGo3nWCQSvOYXmEiFO/Ig8dnfQU/PUk/+hiA5i//BX0QUBwn++lNY
t0+jq2PgpRupiWuAQDVmsGSUJmTN9yG8rrS4s+VCEgAabBdh++lNElbQYRkdlBFeEdGzi8Tv
Tq+tNoGeuQRa4hz/J+jGNPLGK+jGLOj5fPYCe2A/+R/7Q/T4acJv/Bo6bmANHMI9+iPgeKjp
y8gbr6SV2W0fdetEej35fpxDH0Y4PvEbnwdAlO5HDR1GBzPIm69jdY9g9e9HzV5LdwdZDmr8
NDoOsHc/nj7BKrdxD38ENXOZ+MQfI9x8usmlOkZiH8O2Vp9J81ybci3E/9CniF/+Q5KZK9i9
OxFunuTbv43l5vDf/wtopdPeuIUJicXHOJYgTuSi1yy8J/8Vwdd+DdG3B125hf/BX2Tum2V6
m0Mgz3UIogT74b+LnrtO40u/AEmA++BH8D/4S0TP/zbJ3HXsHY8Qv/anOKMPEXz530NhCKtn
J/LK8+hTf4FIGniP/TTCslDVcaI3Po9KIqhN4D32k7jPfBLq08Qv/Q/c4/8IVELw178ITi4V
YO5+AjX1Nv7Hfwt79GGCb/wXhJNDVm5j73gXcuoCQiUIx8UePQ5JQPzGnyN0hnnLOGwwVwsp
DfQhk4Qoinjt4hQzlQYffXSUP/jKaT74QBcHhnLYpfsAkONn0MEcoms4fZoCeKncSjkF3J5R
tErQldup1l1F6eYQJ5feRDKGJERrhfC6EPlehN+Drk+TVMawkgagEblerKEH01XQVz+D6BrB
2f80ojiUlhhdgSRJsC2QN18jefuroGKs7p3Y+96HThrQmMPe9760CMTcNZILX0OHVdyHPwGO
TzL2FsxcRLgF7D3vQc1eQVduI3p3paWD4gbW8BEQFvLW61g9O7EGDiHspWpOrSS6Os6vfP4M
v/pzP7Dq8OU7Z25wa6rCj7z/wSX2kAbRWB7Cskik4j/+0XP86s99aM3f8241ZSOM+Y3PvcAv
//TSHltHdVT5Blb3KMLv5j//8bf4lz/6boq+zSvnbjM2U+OHnz6c9ii3X8cq3Y9o/sZaxiTn
/h9q5hL2riew9z6Jrk+iJs4hdr8XC4W8+Qr2rsfT9OyLr+/Gq1iFElb/vpWvPwqwBenNfP4r
OHufxOrbu+QYVZ9GTZ7DHj6KyC3txZO5W9l6ANfPM+gvzTg8v4FD5HpwvByquAO7VFp43x4+
smp780lYheUgendnuRRE7y6s4shyOWy+D//pf9N6O5aDs/sJnN1PrH1c3168x392yWvW7nfj
7H/qzv+9u1a1tw79wBrXYBPlhnDdc2uO3fO+QyNcOXYRzp3YIU5kppQo89i2taKsQXgF7MH7
F/5vhAkF3wE0vpf2AJCuA9k73rXU1nZxj3xs6WvFIaziUKohslycvU+xEs6ux9a+YMtJC3S7
ObzjP77yIYUBrL1PrmxfHGrHNGiaGQ6MFGIz1IJ4TRkEpEOgKF5/wSmKsy+CQZoiUWm95m84
7yDzAsic5xBGW2tCIQvtzwphFsI2RLUR0ZVfeyLAdxzCFmQHQZxkSokyjyUEA915JuZWL8jd
COMlC2w51yFowSm3Ku0pktf827YsZHNWQUq1JZ4MQZQsXNNWplIP6S6snc057QHW/07DDawC
z7N3pJdrY3Orvl8PY7oW9VQ53yFYZVjWCWxeDi3vZIXo7fIp19KpyBdOXedPv/rmZpvfNH/y
7EleOn3jXl/GusxWwzUXwSDVAq2rBgXCOMHLuBdgnvt2DfD2jelV36/UoiWCPce2SLbzfoDF
PLC7xOnL4wC8fmGMNy6M3XNx3OnLE7z29u17eg2tUK6H9K6hA4LmfoBWhkBRQi6jEnSevSO9
XFmjB5ipNuhftFjnrBI4dwptdYBdgz1cHS+jlGZsukox51Gp37sCajOVgMHeAtfGyvfsGlpl
rhoszK2vRs5zaITxug+VMJYbigEgrRtWqYerDhun5hoM9NyZCcz7DrUgRnaoE2w+N2gicZpT
bjnfwXdtrozNUci5HNk/yJWx2XXbiGL5PXGUNy+N8dD+IUq9ecZnam1vv51MVxr0d6/dA3iO
Tc5zGFvls2itef7Na3z3rZsbHgI5tkVP0WeuurK4cbYaLLlO33U4sKOfE+e3fi+7EpsPglkq
JLh/9wDPvnyBw3tKPLR/iFOXJ9a0/9K3z/KfPvtNPv2Z55ittlc8d/LCOMcODnPswDAnL6ZD
M601J87f4gvPneH1C98b7UoWpssNfv//vsrt6SqDvYV1j//404f5i2+fXbEXeOXcLV48dZ2H
9g/xzCN7V7BujT1DPdy4u4h2k5lKg/7upWtBP/z0A/zVS+e5dGuG3/rzlxif/d4/bLTWjM3U
WpoWXou2p3U+dmCYZ1+5xJH9Q+wb7ePt66sHVM+/eY0rY3P8h596hh/70FE+97VTbY0ZLt2a
Zd9IH8cODvNG82a/OjbHF791ln0jvXz5pQu8eu5W286XlVoQ81v/5yXec2QXv/KzH2wpnfmx
A8PcmKgwNbc0PYpSmi9+6yw/+/ffxQce2UfPOjNKa3Fk3xB/9eJ5Lt+eXbYmUGlEFHNLr7O/
O88Du0v80Zdf590P7uS/f+G7C4tjWmtmKo1lv6vWmjcvTXDx5syqv/nlW7NMNadkwzih2rgz
Srg6Nsd/+/yLfPozz3Hp1syK9tVGtOJQLk4kk3N1akGcsUxqZYa3L1zlgeOPLBimq453Aq4D
O/rpKfjsGeqhkHMJooQvffss5Xq0UAG92ogJ44QbE2U+9RPvx3VsHj+8g+dev8Ifffl1uvIe
YSwXxFaWlVafCeMEpXSagAsQaHzPxRJ3Fmi68h7FnMfJi+M8uK+EELBrsJvJcooDpDYAAAeS
SURBVJ2/fOE83zlzg3/x8cfYNdTDfTv7+a+fe4GTF8dJpOT4oVFGB4qcvz5NI0zwPZuunEci
FbemKrx9Y5owluwodTHYW8CxBDuHepguNzh5cZy+rhyHdg0QRglRM1i1LUFXwae36PPWlUmu
T5TJ+246VLw9y8fed5jjh0ay/Az8zEce4Tf/7AU+/Oh+PNdhphowVW5wdN/gkvH5Rjl+3wi2
LfjCc2eoNSIO7hxoivQ04zM1Cis46o9/+CG0TvcgJFLx6//7eT782AFePnuTidk6xZzLgR39
3JqqMNhboFwLiaUkjCVRnN5DUimEEIwOdCGAm1MVGmHCwweGefPyOLYl+DuPH6Q77/H5r5/m
kz/+JArBZ7/yBnnf5amHdjPcX8S2LL771g1ee/s2nmPzyKERTl+ZoJDzePjAMN984wp53yWM
k2xaoKBWYboSMDoySBLHhGHI35y4xs5SN08c3rFw3M2pKjtLqfDtratTTJUblHryhM3uquCn
1dAHe3J0LXpShbHk4q3ZhQ3dQtB0hHSY5TWdIWnuioqlRKr0aTJfo6AexMxWAw7vLXFgtG8h
yVQQJXz9xBV6iz7vO5bKLpRS1IKEG5MVfNfm1fNjTM7VObynRN5Pl/jrYYxjWQz2FTg42kch
73JjosJcLaQeREyW0+D12IFBpuYaXJ+okPOcBSmC0ppKPWK6EnB4zwB7h3uohwlRLMm5FqOl
7la//iXUw5hnX7lEwffo6/JJpOaJw6OZajUopbDW2TRTC2KuT5QJIokl0qf97qHude1vT9f4
9pvXObKvxJG9g9ycrDAxV2d0oMhsNUQIuH9XP0JYzNWCtNRuM63O9YkyYSx5+OAwcSI5cX6M
hw8OYQnBV09cIYgSnnhglH0jPViWhdbw9s0ZTl+eZHKujlKaQ7v6eebhPczVAk5dnuTI3hJh
LHn53G2ePLqTHQNdKKWyOcDc9ARjU3McOHgfQqdiuK+8cpVdQ928+8HVdTCrsZVSExr7d96+
41Ij9g4M0Tsw1DROX5NKZd56ZzBsFdpTJXIDu48Mhq2AeXQbtjWbXwhTGscMgQwdihkCGbY1
5tFt2Na0oQdQq9a0Mhi2OpvfEqk0tm0cwNCZmCGQYVvTlh5gveV0g2GrkunODWoVrt1cqvuW
SuGYWSBDh5JJCpErduOUqwsp9aSUaJWmR9xonditUqfX2N8b+46qE1wvzzAxMcnA0Ah2s04w
Ahzb3pAo6V6LsYy9EcNlsi709HP8eH/TuJn+RGlsMwQydCgmejVsa4wDGLY1bc0NajB0Gm3J
CmEwdCrm0W3Y1rRlCJRlI7bBsJUwd65hW2McwLCt2fyWSKnNEMjQsWS6c6N6hfMXr9w182Pm
gQydSyYpxPj0LIN5QTnS5FGEYUhfl4+MI+r1NK2dECLNuLXG33CnRq1t22itmxm+9Lp/z9e1
tSyLJEmwmpok2SzSkOVvKSWe5y28Pt9+q59DKUUURat+vvU+U5IkuK677mdd7XMARFHU8ue+
+/uL4xjHcVr6rCt9Pq01cRxn+v0W/50kCUIIHMdp+Tdr5fO3+jvGcZwtM9zMxG2u3Z7m6LGj
INPMcH4ut+HEWPdajGXsjRguk3X/0Cj9Q6OpcfM1kxXO0MmYu9ewrTEOYNjWGAcwbGuMAxi2
NcYBDNsa4wCGbY3QKVSr1UyGixc0NkorJXqM/fe3/fyi1D07f5aFsMXMm2304ucv4F7/AMbe
OIAR8xi2LRtfRwauX77AZDXikWNHyOLDtcosY1MViKsE2uPoA4cynXd2apxL18cpeIBb5PB9
BzLZ1yuznDp1jr6hfhqh5PjRBzPZoxWvf/d5ikP7qJWnOXzsOLkMCYIbs5OcvTZOf3eO2XKd
h449lC27nmzw2snzDJX6mZwY5+DDj9Httm6fhHVOn3oT/B50HHD/sUcoOBnOr0JOnHgTP58n
CgL23H+EUne28qyn3jiBV+yiXq4xMLqLPTuGWrLTWnPq1CkO7hrm7NUb5HLdNBoB73rXsZYD
2muXztBVOsiNaxc3FwQr4dBXzGfWgxa7+8j7DrZXIO/Z6xvcjRDs3beXXKEbL8sP18RxXQp5
jxiP7g0UlK5Mj1GuB8xU6gyXeslcrNxxIKwz05AM9HUhs36BSUAtTLh2/Sa7R0s0omwNOH6e
/qEdDPYWGB3qI0qy2WulsByXOA4ZGRkmjLJnZxsaLFGenaZ3cBQZhy3bCSEolUpEQcSOXSNU
awmDvV1k+QkGBwcRlk1poH9zPcDocInpapTZiyozk1RqdUZKfUgr+w2opGRmboah3gJ4XRuy
z/cNsnOwh3KwvJL4enSXdvDkU30oLKam5+jysjmhnyvQNzTCzpESU3N1vKzp5f0+Du0eondw
hMmJSXYXMtprGBwcwnctbo1PM5zL+AvaOYZLfXSXhpmbmmLHQPbfAGHx4NFHqc6M0z+8s2Uz
rSWNShlncISkXuPRY/sYn66yvHT3qi0wNV1Bu5KoNmdiAMP2xqwDGLY1xgEM25pNxQAGw/ea
22eeJ9jxFM7sBfD6qNXLPHDfwUyzjmthegDDlkcDF94+z5985ktMT1xlvNG+tv8/uBpnLZ6q
xToAAAAASUVORK5CYII=
</thumbnail>
</thumbnails>
</workbook>