forked from akuchotrani/TableauGettingStarted
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndycar.twb
715 lines (714 loc) · 44.2 KB
/
Indycar.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 10300.17.0728.2252 -->
<workbook original-version='10.3' source-build='10.3.2 (10300.17.0728.2252)' source-platform='win' version='10.3' xmlns:user='http://www.tableausoftware.com/xml/user'>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Indianapolis' inline='true' name='federated.1rkk6x80yz3i3g1comevr00l7p8c' version='10.3'>
<connection class='federated'>
<named-connections>
<named-connection caption='Indianapolis' name='textscan.1use4wa1ajm9ng1g4csw21fvt3l3'>
<connection class='textscan' directory='C:/Users/aakash.chotrani/Desktop/Indianapolis Json File' filename='Indianapolis.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.1use4wa1ajm9ng1g4csw21fvt3l3' name='Indianapolis.csv' table='[Indianapolis#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='integer' name='Lap' ordinal='0' />
<column datatype='integer' name='car_number' ordinal='1' />
<column datatype='string' name='elapsed_time' ordinal='2' />
<column datatype='integer' name='Hour' ordinal='3' />
<column datatype='integer' name='Minutes' ordinal='4' />
<column datatype='real' name='Seconds' ordinal='5' />
<column datatype='real' name='Total_Seconds' ordinal='6' />
<column datatype='real' name='Lap_Time_Seconds' ordinal='7' />
<column datatype='integer' name='Pit_Stop_Count' ordinal='8' />
<column datatype='integer' name='Tyre_Type' ordinal='9' />
<column datatype='real' name='Weather_Elaped_Time' ordinal='10' />
<column datatype='real' name='Ambient_Temperature' ordinal='11' />
<column datatype='real' name='Temp T1T' ordinal='12' />
<column datatype='real' name='Temp T2T' ordinal='13' />
<column datatype='real' name='Temp T3' ordinal='14' />
<column datatype='real' name='Temp T4T' ordinal='15' />
</columns>
</relation>
<metadata-records>
<metadata-record class='column'>
<remote-name>Lap</remote-name>
<remote-type>20</remote-type>
<local-name>[Lap]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Lap</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>car_number</remote-name>
<remote-type>20</remote-type>
<local-name>[car_number]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>car_number</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>elapsed_time</remote-name>
<remote-type>129</remote-type>
<local-name>[elapsed_time]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>elapsed_time</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<attributes>
<attribute datatype='string' name='DebugRemoteCollation'>"en_US"</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"heap"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4294967292</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"str"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Hour</remote-name>
<remote-type>20</remote-type>
<local-name>[Hour]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Hour</remote-alias>
<ordinal>3</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Minutes</remote-name>
<remote-type>20</remote-type>
<local-name>[Minutes]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Minutes</remote-alias>
<ordinal>4</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Seconds</remote-name>
<remote-type>5</remote-type>
<local-name>[Seconds]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Seconds</remote-alias>
<ordinal>5</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Total_Seconds</remote-name>
<remote-type>5</remote-type>
<local-name>[Total_Seconds]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Total_Seconds</remote-alias>
<ordinal>6</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Lap_Time_Seconds</remote-name>
<remote-type>5</remote-type>
<local-name>[Lap_Time_Seconds]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Lap_Time_Seconds</remote-alias>
<ordinal>7</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Pit_Stop_Count</remote-name>
<remote-type>20</remote-type>
<local-name>[Pit_Stop_Count]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Pit_Stop_Count</remote-alias>
<ordinal>8</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Tyre_Type</remote-name>
<remote-type>20</remote-type>
<local-name>[Tyre_Type]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Tyre_Type</remote-alias>
<ordinal>9</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Weather_Elaped_Time</remote-name>
<remote-type>5</remote-type>
<local-name>[Weather_Elaped_Time]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Weather_Elaped_Time</remote-alias>
<ordinal>10</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Ambient_Temperature</remote-name>
<remote-type>5</remote-type>
<local-name>[Ambient_Temperature]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Ambient_Temperature</remote-alias>
<ordinal>11</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Temp T1T</remote-name>
<remote-type>5</remote-type>
<local-name>[Temp T1T]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Temp T1T</remote-alias>
<ordinal>12</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Temp T2T</remote-name>
<remote-type>5</remote-type>
<local-name>[Temp T2T]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Temp T2T</remote-alias>
<ordinal>13</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Temp T3</remote-name>
<remote-type>5</remote-type>
<local-name>[Temp T3]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Temp T3</remote-alias>
<ordinal>14</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Temp T4T</remote-name>
<remote-type>5</remote-type>
<local-name>[Temp T4T]</local-name>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias>Temp T4T</remote-alias>
<ordinal>15</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"double"</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Indianapolis.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Ambient Temperature' datatype='real' name='[Ambient_Temperature]' role='measure' type='quantitative' />
<column caption='Lap Time Seconds' datatype='real' name='[Lap_Time_Seconds]' role='measure' type='quantitative' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Pit Stop Count' datatype='integer' name='[Pit_Stop_Count]' role='measure' type='quantitative' />
<column caption='Total Seconds' datatype='real' name='[Total_Seconds]' role='measure' type='quantitative' />
<column caption='Tyre Type' datatype='integer' name='[Tyre_Type]' role='measure' type='quantitative' />
<column caption='Weather Elaped Time' datatype='real' name='[Weather_Elaped_Time]' role='measure' type='quantitative' />
<column caption='Car Number' datatype='integer' name='[car_number]' role='dimension' type='ordinal' />
<column caption='Elapsed Time' datatype='string' name='[elapsed_time]' role='dimension' type='nominal' />
<column-instance column='[Forecast Indicator]' derivation='None' forecast-column-base='[Forecast Indicator]' forecast-column-type='forecast-indicator' name='[none:Forecast Indicator:nk]' pivot='key' type='nominal' />
<layout dim-ordering='alphabetic' dim-percentage='0.328302' measure-ordering='alphabetic' measure-percentage='0.671698' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
<default-sorts>
<sort class='manual' column='[none:Forecast Indicator:nk]' direction='ASC'>
<dictionary>
<bucket>"Actual"</bucket>
<bucket>"Estimate"</bucket>
</dictionary>
</sort>
</default-sorts>
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='Indianapolis' name='federated.1rkk6x80yz3i3g1comevr00l7p8c' />
</datasources>
<datasource-dependencies datasource='federated.1rkk6x80yz3i3g1comevr00l7p8c'>
<column caption='Ambient Temperature' datatype='real' name='[Ambient_Temperature]' role='measure' type='quantitative' />
<column datatype='integer' name='[Lap]' role='measure' type='quantitative' />
<column caption='Lap Time Seconds' datatype='real' name='[Lap_Time_Seconds]' role='measure' type='quantitative' />
<column caption='Pit Stop Count' datatype='integer' name='[Pit_Stop_Count]' role='measure' type='quantitative' />
<column datatype='real' name='[Temp T1T]' role='measure' type='quantitative' />
<column datatype='real' name='[Temp T2T]' role='measure' type='quantitative' />
<column datatype='real' name='[Temp T3]' role='measure' type='quantitative' />
<column datatype='real' name='[Temp T4T]' role='measure' type='quantitative' />
<column-instance column='[Ambient_Temperature]' derivation='Sum' forecast-column-base='[sum:Ambient_Temperature:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Ambient_Temperature:qk]' pivot='key' type='quantitative' />
<column-instance column='[Lap_Time_Seconds]' derivation='Sum' forecast-column-base='[sum:Lap_Time_Seconds:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Lap_Time_Seconds:qk]' pivot='key' type='quantitative' />
<column-instance column='[Pit_Stop_Count]' derivation='Sum' forecast-column-base='[sum:Pit_Stop_Count:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Pit_Stop_Count:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T1T]' derivation='Sum' forecast-column-base='[sum:Temp T1T:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Temp T1T:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T2T]' derivation='Sum' forecast-column-base='[sum:Temp T2T:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Temp T2T:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T3]' derivation='Sum' forecast-column-base='[sum:Temp T3:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Temp T3:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T4T]' derivation='Sum' forecast-column-base='[sum:Temp T4T:qk]' forecast-column-type='forecast-value' name='[fVal:sum:Temp T4T:qk]' pivot='key' type='quantitative' />
<column-instance column='[Forecast Indicator]' derivation='None' forecast-column-base='[Forecast Indicator]' forecast-column-type='forecast-indicator' name='[none:Forecast Indicator:nk]' pivot='key' type='nominal' />
<column-instance column='[Lap]' derivation='None' name='[none:Lap:qk]' pivot='key' type='quantitative' />
<column-instance column='[Ambient_Temperature]' derivation='Sum' name='[sum:Ambient_Temperature:qk]' pivot='key' type='quantitative' />
<column-instance column='[Lap_Time_Seconds]' derivation='Sum' name='[sum:Lap_Time_Seconds:qk]' pivot='key' type='quantitative' />
<column-instance column='[Pit_Stop_Count]' derivation='Sum' name='[sum:Pit_Stop_Count:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T1T]' derivation='Sum' name='[sum:Temp T1T:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T2T]' derivation='Sum' name='[sum:Temp T2T:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T3]' derivation='Sum' name='[sum:Temp T3:qk]' pivot='key' type='quantitative' />
<column-instance column='[Temp T4T]' derivation='Sum' name='[sum:Temp T4T:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='mark'>
<encoding attr='color' field='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Ambient_Temperature:qk]' type='custom-interpolated'>
<color-palette custom='true' name='' type='ordered-sequential'>
<color>#f1f1f1</color>
<color>#f2dada</color>
<color>#f3c3c3</color>
<color>#f5abab</color>
<color>#f69393</color>
<color>#f87c7c</color>
<color>#f96363</color>
<color>#fa4b4b</color>
<color>#fc3232</color>
<color>#fd1919</color>
<color>#ff0000</color>
</color-palette>
</encoding>
</style-rule>
</style>
<panes>
<pane id='2' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
</pane>
<pane id='3' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T1T:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' />
</encodings>
<trendline enable-confidence-bands='false' enable-instant-analytics='true' enabled='true' exclude-color='false' exclude-intercept='false' exclude-panes='false' fit='linear' />
</pane>
<pane id='4' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T2T:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' />
</encodings>
</pane>
<pane id='5' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T3:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' />
</encodings>
</pane>
<pane id='6' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T4T:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' />
</encodings>
</pane>
<pane id='7' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Lap_Time_Seconds:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' />
</encodings>
<trendline enable-confidence-bands='false' enable-instant-analytics='true' enabled='true' exclude-color='false' exclude-intercept='false' exclude-panes='false' fit='linear' />
</pane>
<pane id='9' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Ambient_Temperature:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Ambient_Temperature:qk]' />
</encodings>
<trendline enable-confidence-bands='false' enable-instant-analytics='true' enabled='true' exclude-color='false' exclude-intercept='false' exclude-panes='false' fit='linear' />
</pane>
<pane id='10' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Pit_Stop_Count:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' />
</encodings>
</pane>
</panes>
<rows>([federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Pit_Stop_Count:qk] + ([federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Ambient_Temperature:qk] + ([federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T1T:qk] + ([federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T2T:qk] + ([federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T3:qk] + ([federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Temp T4T:qk] + [federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Lap_Time_Seconds:qk]))))))</rows>
<cols>[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Lap:qk]</cols>
<forecast-specification auto-forecast-agg='true' band-confidence-level='95.000000' enabled='true' fill-type='fill-missing' ignore-last='1' model-type='auto-season' range-type='auto' show-prediction-bands='true' />
</table>
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='10' param='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]' type='color' />
<card pane-specification-id='9' param='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[fVal:sum:Ambient_Temperature:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight field='[federated.1rkk6x80yz3i3g1comevr00l7p8c].[none:Forecast Indicator:nk]'>
<bucket-selection />
</highlight>
<floating-toolbar-visibility value='2' />
</viewpoint>
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Sheet 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO29149kWX7f+TnXho/MSFuZWb6qq6vN9DR7ZrpFDrmSOJIoCRJWuysIEARC
etGbzKsgQYL+AT1oFyusKLdYQRYUyCUFUeQYcjji2O6Z7uqq7i5vMit9Roa/9hw93MhIE5Em
IrMyypwPUKjIiPuL84t7z+/48z1CKaXQaF5RLAAdA5pXFWvrRb1eH+gLms0mmUwGgDiOMU2z
L3vf93Fdty8bpRRKKQzD6MtuEP8GsZFSAjzX/gkhEEI887ROy2YQO6VUEgBCCPL5/JENm7VN
ar5ianwUoGMbRRGWZR1k2oVpmp0AOipKKaSUfd+kQfwbxGbQADgt/+I4xjCMvgPgtPwbxEYp
RRzHfdl1AmDvm2urazhAenICp4fh0tIS9QAmSkWklERRBLDr9VGJ47hvm620+m26DeLfIDZb
fm0FwrNMa1CbQZq9p+nfoHmiX7se4RLyg+/+AenxGf7E5ERPoziOCUOJYRgYhtGJukEi13Gc
gaJdCKFrgAFtXtYaADh+DSCEw/TMBLHhIoFeWezq62/25dxBxHF8Yt+l0fRLzyIq61p8+unn
6KypednpGQDjZ84yOVakvwpyMAbp7Ws0J0XPAAgDn8L4eK8OAgCVjRUeLyyfiAO6CaQZJj1H
ger1OkGjSUzvPsDTxSXszAhSymOPAh2nx69HgfQo0HHtugJg9c6n5C+8zdnwU/Z7fOOlEqs1
/0RGgWzb1qNAx0hLjwIlnNgo0PjFK/zghz/AyhRJ7WM4cWaOiTN9+bcvugmkGSZdAWDYaV6/
epFHKzUUnEpHWKM5Ke7Mb/Av/+tHR76+Z33xxeefM/94iczoKNfmpk7MuV7oUSDNSdL0Aj57
tHbk63s2Us+eP8fEhctc2SfzR36dG7duD+bhHnQTSDNMetYAjQNHgRSf3fqcTS8+kVEgvRbo
eGmd5ijQ4+UK/89v/bQvm60Bi2dts2XX9MO+bHoMgwZ8/NNbZIpj+4wCCd5+9ytUKpt6LdA+
vKyjQEEU8/njozcvXgS67lxzfY33fuF9bt9fwj7AsFgcOREHdBPoaEipiHvUKHEsUX0uWpFS
IiT0W8jG8cu3caorAKIg4JPPHvL6+TNE9J4I05w+v/vje/yz3/zJsN146egKgOLMBX5lZApD
7NNBINkQs9mMmJkaP7YDehRIM0x69gF+4z/9Z0rTc/yJX/mTvWsA08ZrlJGydOxOcBAEAwXB
q9AJ9sOYL55sAPB4pdLXd2mORo9CXvHmW29S9eN9J8EWHtxFpksn0gk2TVN3gvdJa7nc5B//
mz/o6zs0/dH1ZNfu32d+c4VLl76ybxPo6pvvnJgDugmkGSZdedzJFcilsjx9eIfLlyYOHAk6
CZ7XUaCNaouHS5uDqS60m0DGMVUX1irNvuw1/dPdCZ6a5ZemZofhy3PFjfvL/JP/9INhu6F5
xvTXSH0G6CaQZph0lOH2CmO1anXsfG7ffsAWzeZ2NT1Ic2GnsNZROQ1hrPGcxV/6+UsDTstv
jU49+yUAL6N/x1kK0a+d2E8btLq6hjsxzmGabbVa7VjCWIMGgBbGGtzmZd0QcyLCWAAPvrhF
YeosR9eKGxzdBHo16GfOZquA6/e7pJRHHlTp7CDr9aEpIn7ww5/yZ/7MLx3aBFJK0Wg0gN1N
jP0c2Tup5C8uYhtGz3UuAMF3vgOVCoQh7LCNZe/FLPE+NyeWsucGn53Xi7NnMb761U5pAslN
3VmSx1JCjzR2/t6tmyuESB7k3uuF6Hl/9n14qvc6IAGEYdizpul8l2lijI7uen9QbdC996If
m37SOqh2F0J0BcDWdx+1ibt1/b41wPrmCo9uLhAeMQBu3rzZ5cB+jux9P/i930NubGDuc2O3
3jeWlxHl8vb7+9xQQ4ieLVtzn/edHemqSgW1uYkALMPo/T37+LlfxtjPz32/56Svz2Tg7Nnt
600zCcgB2tj92NnnzyOy2X2DJlpdRXoexDE09wz3noJ/W/TM3yPFaS5/yempC7oXwzD42te+
BgzWdvNu30YeoQ8g4hjjGcu4y3wetaO0fBlQgGy1On/3tzhjcLxGAw6qLXK55F+jgVhZOSWv
uunpYbPZJKiuc3/+ZLR/NJrnlZ4B4Ps++dIUF/ZsiVRKEgQhUsZE0fM5g6vR9EPP9kosJalU
d7OkVa9y+/ZDMqNZQl/xxutXO2PyW/S7QvPl22KheZHoGQBT46N8+rDS1QmMoojxmTNEfhPT
VZ3MvzVktTW6oNG8KPQMgI3KCg8/XSD807+46wLLtomrLSYnJ/EjOsuht0Z2lFJ9j+sLdC2g
GR5dAbB89x6zb3zAX7kcdSnDZXJFzueKyevT8E6jecZ0BUDoNZi/d58MNsXSyKHzABrNi0xX
/p5760uUGk0MtCyi5uWnaxhUqYDf/i//he/+jx+d2qSJRjMsep4R9sabr1EP9CI1zctPzya+
kB4P5+u8t+d9r1Flo+bjipCqr7h4Tu8c07zY9AyAUIVsPFkjhl17glPZAkZ1kWYksYQ6EW1Q
PQSqGSY9dIF8LGOUq2/ZXZpAjWqZxaUlxsfG8HbMAxxHFiVCB4FmePToA7hksg5GtXs5cLYw
yrvvvlyrJTWvNt3iuJV1bt15gIwt4l4XaDQvEV35O1McY2a8SMUzhy8ZodE8Y3rm8Vgq0un9
jsiDZq3M0lp53881mheFHhNhipmZae7dvruv6vxquYpX12KtmhefrgDYXLjPf/3W98iNTewr
iSLigIbX31E0Gs3zSEcYa0tFID99nr/xq3+NRw8e4UdRz07wzNmLQDLsufOMr0F0PmPDQB5l
J79tI93DVIqOh3Ic1Esm06JMcyhLWpSUyYb3w5ByqGvOhEqgtWPjdD80Gg2y2SwwmDKc7/u4
fWbs01CGO47NTlmUZ53WQOK9A8qinJZ/g9jAYLItFiQP6ijqbEop7t27x0g+Q9VXXDo3SxRF
VD2JZRq4lk0Qb2vtZFM2XhBhGsmNdh0LP0hqC9MwMA1B7IUE0uB7nzym1vQxzURDxjYNMimb
fMbFtgy8IKLeDNise8RS0vRCqs2AasMDBJZpMJJzGStmsC0TKRUtP6TWDGh4AS0/whCQSTnk
0jaWaWCaBhPFDJOlHIWMiwBcx8S1LVzbRAiBIUwMw8IQAsPYzjBSKqRUbX/bcixC4AcRkZT4
YYQfRri2Rcq1EO37bIjEV8MQCLFb7mTvRKJUCs+PME2BY5ldGVYpRRhGGKaZ7MzbZzvqVpo7
9XO0MtwBukD7UV5eYKPawHZT2O2lEFEs+faHD4liybWzJZbKDTbrPgA//+Ycf/jJY6RSmIbg
a9dn+f7NeQAmR7IUcy437y9jWhYTxQwtP8QPY6JYcmG6yOeP1oBE73Ek57JWaRFLRSmfIpuy
qTR8itkUX7l2hpsPV9ls+NS9Cm+eH+fmozVQYAj44I1ZPrq9RBjFjBfTWKbB3YUNpExqkp/d
XSIIk+p6NJ9muZwIfQkBadcijCS2tbtECqM4OaTDEEkwKIUAaq0gud40GMmneLpWAyCTsrFN
Az+MSbs2tmUglcKxTGzLxBDd2patIGJhtUYh65JLO+TSTqcw8cMYL4hotAJc26TWDIikxDQM
0q5FvRUglSLj2p0ASLtJ4LuOST7tYJoGhYxLtZk8r1zK4exUgbsLyak0F6ZGqLcC1qstbNPg
7csT3HywhpRJoH356hQ37q9iCMhnXKZLWe4uJKODl2ZGqTV91itNDEPwzuUpPrmfyJ9YpsGX
Lk12/i5kXEqFNAtrVQDmxvNUGj61VgDAG+cnuDOf+ISA1+ZK3H6ygWkIClmXfMZhcb2OUoqr
c2M8WCxjGknBdHaqyOOlSucZ5DMOG9WktTM5mt1fG7QX9WqZR0+eUizkaEWCqxfPHVsb1PM8
Uqn9h1x78TJpgwZRTBjFKNVd9duWgWu3l5nEknoroOmFpBwL1zGxTRMpY2wrCVIARJLBokgS
yaRmRkG05ZMQNLyAatNns+7jBxHVhk+57lFr+mzWPPwwQrWvjaXCCyKkVLi2SRDFOJaJZRkI
BNWmT6XuoYC0kwSeEIJMyiaKJMIAgeDMWI5yzUtqrVgyXcqxtJEIMru2SSZls7rZRCnFSC6F
Ugo/iBGG4OKZETaqLbJpBwGcmyryaLmCjCWuY5HPOCxvNFBKcWmmxL2nG+37L7g8U+JeO6Cz
aYdMymZhNQm0s5PF/gKgF1oct5tXWRw3ObZ1+3W95WOaJkEY79tE6+VfLJMmoJSKIIqpNvxD
Rh6Ta5N7rrYLhIMsejWBvHodK3e4LPpJoVUkXi5MczvoLdPANHix+gCLn9/ifiTJYvPeB+89
8yOSdABohklXAIxfvEwpnaa10r0foFEtc/vuE0bHcrR8xfXXLh/bgX6PEtVoTpLu5dDhBt/7
6QpiY42vXzi3SxollUohhCIWNtnUyWyIGcRmy+5lPyf4WdoM0vU7Tf8GzRP92nUFQL0KX37v
DdJKkNvzWavVIpsvMJZLUQ9OZkOMZVn6nOBjpPW8dYKHZdM58OK4fYA48llZXiYtLIqlkV2f
5YolrhZLAIzsNRwQ3QTSDJOuImr2jbeYy6epNb1T2Q+gO8GaYdIzjz98+JD5z29ye8/5AErG
NJot4ijED05mNagOAM0w6dlgmpycxJMul/acD9Bq1rl/9zGpQpooVLz+2pVd6tCHHW7Wi60z
q/plkLRO0wb6b96dpn97Ze2fZVqnYbNFv3Y9A2BtfZ1srti1TDXwPPKlEir2wVQdZ49zPsBx
bE4zrWedxnFsB/FvUB+f13u+ZdOvXc8ASDkWy5Val1xJKpPFDeuMTp4hjNurG48pj26a5sDL
jQexOw2bQUeBTss/YKBRoNPyb1Cbfu2UUr37AEFY5cHNJ+wdUU1lcpw5M00qlSafTffl4H7o
USDNMOmqAcpPl7j41vtkxzc5mSx+MLoTrBkmXQFQWZrn3uOILDbh5fO7lkJEgUel7pOyYqoe
nJksHdsBHQCaYdJ9PsDb73DOtnu2jRQCz2vSiEKUkkg5cuylEGEY9j3rt5WWXgqhl0Ic164r
51n2/us/A6/JwvwTxsZKJ6YNqpdCHC8tvRQi4cSWQhxEtjDaORX+pNBNIM0wGbr6oR4F0gyT
oQeArgE0w0QHgOaVpqMMV6/X+zZWStFsNnedFN9vx6/VapFO9z/jsFdC5CgM4t8gNoMKY52m
f4MUPKfl3yA2g9p1hLG2lB0ORjF/7zap0iRLi6tcv34VpVTHdhBFL9u2B5JFeZ6V4QYdBdLK
cIPbDKIU0vcoUNCssLi4ghm7XBtLUwkEdnsoFAaLQGOH/VHZ+rHPc2kE/QfAadYAgwyDPs/3
fJBCse8AMKwU02emIOPyYL3K9UloBn352YWUkjCKuXF/hVgq/DAijiWZlMNEMdORI3Qdi7Rj
YZkGCoWSCkTMRrVFwwvww5hK3cMLYuJY4tgmQkC1mYhJBVFMHMU0/JA4bq9kBTw/RBiiI1uY
cS2kSjRtIBGkMk1BIZviTCmH0c40jmMigGrDJ4wlcaxQKCZHslhmco1UiYJcy48IorgjbpVJ
2TiWiWkIUo6FYOv65MGnHavzu8NI8tmjVWzL5LWzY0yNZsmmnW3RKj8AIYhiiRdEtPxox2JB
I5F4RJBLOxRzLq5tIVC4joXrWLukGV9Fhi6M1Wq1wLD47z+6hyJRCbNMg0YrYK3S7Igptfyo
o7upVDt6TYORfJp82sGxTQpZl7RjY5kCP4yRUpHPJJKCjm2CUhRz6U7mEkKQdixku/TYUkHb
0uxMrlIIYbBZ91gpN4jbzRu/LaVYyLhYloFpGCilWKs0CaPkM9MwsC2TtGvhtH9X1rVpBUlA
JPql28cEJk2TRAd163dbpsGV2RJRLLm/WGal3KDRlj00hIFlCmzLxDQNUu1CYuv3RbHED2OU
UtSaPrVmgB9GRJHsSFBalkHasXEdE6Mt9VjIprCt3YERxRLPD0EI6s2gY2ubiXqdEALbMpL7
3MYyDVK2STbjkk87pJztvJF2k+CTaqvQ286GO2sAQwhSrkXGtTuykGw9nz0VWBzLXbpE7ceX
qOL1yOWK5yAAXnVpxOOmdZyZYEgCeUuTdUvjtFL3COPd8zOWaWAZAstKdEUt0yCWiiCM8cMk
YMNIEkTbkuhhFNNoJbVzvRW0gz3BCyJiqRCCRGpxR8aVSmKI5G+lFK0gorWn5o7bBeFOenXu
BUlNuF9jr1sY64sv8EZGyGAwMTWxa5y0US3zxZ1HlMbzND3FG9eu7PO1R0dPhA0PIZIm2M6S
GWBuotDz+ud9KcSJKMMpGVOtVImFydieAEi5LqYhiLDJpbUu0H7oxXCnbzOoXVcA2A7M339E
kRQTVy9R3PGZ53tkC0UmChkaWhdoX16UJpBeDNejBkjlCnzlg0s8/fTjrjPCsoUSVwrJHoDi
XsMB0U0gzTDpCoC1J0+5H82TFTancVqWXgqhGSZdATB19XXm8jlUHD9zZWjQAaAZLl2N1Eyx
wK2Pfszvf/MP8OTujlKjVubWzS9YXJrn3sMnJ+KAbgJphknPHkM24xKrMouLq1ycney876ay
5PMZglBhGyczCrTzmNV+0KNAx7PRo0AJPQOgXN4kky0ytyPzA9Srm7Q8n4mJUVonNApkmqYe
BTpGWnoUKOFEt0QahoFld380MjbJyFgSFKN9ubc/ug+gGSY9i6h0WrDyuEz/575rNC8WXQHQ
rFYZO3OekTPFrnmAZ8ExlyJpNMeiq52zfPvz5JA81yZi9xlhXqPKWqWFK0KqvuLyhbPHdkA3
gTTDpPc8QLHQcw4glS1gVRt4MTgmei3QPuhRoNO3GdSuKwAyxd4rASFZDbq8ssL4+BheLE5k
FCgIAj0KdIy09ChQwqkJY73zzkmN/yToJpBmmLza++E0rzxDDwA9CqQZJkMPAN0E0gyTYwlj
ATSbzc7rQfRcWq3WQKMsWhdocButC7Rt06cwVm+OsyneNE0ymUxfNnpT/PFsXtZRoEH2BPfd
BGq1WkSBR73p9Wvak0FFpzSak6CvMIu8Oh998jmzk6P4keK1K5c7k2Ew2PmuO+17EYRxRz5D
CEGl4eMHEUEY0fCjRENHKuJY0vDCRJcnlh3RqULGxWwLVcWxJIoVtmVgGALLMCjmUri2idtW
RnBtk1RbgMsQApTEshJxLMfaXeNIqQiiuCPPEbf/jqKYatPnyUqVlc0mGdcmk7KwzUT+Y0u3
J+VYzIzncax2aawkmVSid7SzdPaCiDvzGzxdq3H17BhTI1kyqUSLZ+85zYkOEIkQmFS4diLA
lWj3sOs5DXJK5PN8TnC/dn3PA6ysrBIHTfywiGJbXOo4KKVoeiH//Lc/SlTZpCKSipYf0miF
CJFo0igFCsVoLo1jm9imQT7rknIsTENgGgaZlM3PTZ3BthLNGj+IqDb9jp6MKQT5jEUsVZJO
LHmwWMYPYrww6YcEYaLkFkYxsn1DY5lo3sRSYhgCQTvjKYVjmx21ONM0SLUzWiHjcn56hLcv
TlJvBXhBRBRLWn64S+zrezceE7Q1eaI4xg9jgjCG9u+2TYMwllw/P8GZsTzf/ugBK+UGLT/E
sUxSjolhGPhhjOeHOO307bbWjh8m+jtRFDNWyDBezJBJWUyMZDkzliebsrEtE8c2Sdlmt7BU
mzCS+EGEYUrCSEJ7MtIyjY4wmCFEl1jV84wQon9hrCiKQEnCGNIp50SEsVzXZaPmUW/6nZLZ
daxtRbc9DKsPINuBo2jPRBu9O5In1QfYUnbLuFZXOlulfb3pY7QDJZOy95U6DMKY9WqT9UqL
estnudxgdbNJvRV0BK28IGoPLohODagAP4iwTAPTSGb/kxoKlEp8jNq1jVRql2JbIjeZBONe
/w2xu/AMwrhTMBxFvdpoF3oApiE6yn6GEBiGSKQte3yHaNt2/h62Mtwg8ui6E3w8m4M6wUmt
l9SOst303KpNDktLqcRu+2/wgxDVbqrtvnb3HJDZDqwt/w57tlKpRKZSJa8FAqliDMPsBFCv
GNqZrlI9+gDVxUd875NbhIHNn/sL33jmG+P1RNjzhSEEhil2SRUelUQfdHfGNYQaIKjF8JTh
ZCy5/sbPEXq1XnqiJ44eBdIMk64A2FzZ4GG0SpbeZwWfNLoG0AyTrgAoTs/w/tQkLkIHgOal
pyuPj86cobLwkB//9BPdBNK89PTMfUuLS6w8uMvd+eVn7oCuATTDpGcAWJbF6PQcF+emnrkD
OgA0w6TnmFEQhqTSua5TNRrVMrfvPKZQyuL5ijdfv3psB3QTSDNMegbA2GiB20+qXe8bhsn0
3AyB3yKXlloacR/0pvjTtxnUrmcAbJSXeHBzlfAbX991QRD41CoVJidLtMKTkUbUm+KPl5Ze
Dp1wYpvi158scOXdrzN1vs7eBQrF0gTF0gQAI325tz+6CaQZJl0BUF9b4u7CE7LYTJ6Z1Esh
NC81XQFw9ktf5pxp7nus5EmjA0AzTLoCwOizXX1cdBNIM0yGnvt0DaAZJgMFQOi3qNabh194
BHQAaIbJQAGw8HSR5aXFk3FAN4E0Q6S/wdYtVLK5/CTQNYBmmAwUAGfPnSc6ocMddQBohsmx
lOEC3zu2MpznecRxf4cxaWW449loZbhtm6Erw1mWRSqVYrXSRMaKVhASS4UXRNSafkdzR7bl
U9YqTfwgQpFsag6jmCiWpByLfMbtbIQ2hCCbshkrZigV0qRdizgG1xbkMy6Z1NGm+F7EpRA7
N6fv3aMLL+9SiBPZE3ywgeSzzz5nbCRP1VdcvXiuLyf3c6LRCvmP37qJVIqMa2GaBo5tJqJW
xrb+UNq1+dKlKRw72flvta8zDWM7YNrfK6Wi3gp4ulbjxv2VtuRH0neptQI8f3vRlGVuS324
tkWpkCafcRCAY5ukXbsju2Hv2CxumgaunUh+SKlo+iHVhk8cSzYbHmuVFkEYtyU8khLXtU3G
ihmyKRvTEIzkUowXM2TTTvIAzSS9RIJE0PRC/sO3b1JteO31TwbpdrBHsWSj2uykH7cPNhci
UVlQSqFIZEMyrs2lmVEuzoxSyrmM5NOM5FKvvDhxX7Ioi4/ucnt+jbNzs9gGzM7OUqvVyGaz
QFLy9VvqBUGA4zj9eT1gWvvZhJEkaq+QDMK4rZ0ToICWFxDGSZPBMATRjs5PLBNtHkj0aNJu
kjENAcVcismRLI5tJpmz3WwLwpiVzQYtLyKWkkrDZ73aoulHKClRiG21u7YG0Z//4AqXZ0Y7
vm4Fu1SKUj6FbVmdgOn+zcn31FsBD5c2ebC4yWbdY6PmUWsGgCKbdii2a8WUkyjjObaJYyW+
V5o+XhAlgl1b9yuWOJZJPuNgCNqBZuA6u1cR9NL4SYTN9m+qWOZ288wyDQpZl2zK6RSGkGj7
bF0TtXWNoihGkmgMbSn82ZbZvpaOMp9jtfWETKO/AAh8j9XVNWxT0Ajh4rlZrQvUg2E3gQ5j
ZxNoq+aq1D3qrYCWH+GHUUehzjAExWyKtGthGmCZJrZlYltbtW7QGcjYarruTWvvc/LbKnn7
4QVRJ5ijWFJtBDS8ACm3s+qWfhGAbRlt8a2kyedYZqKUF0Qd0S6lFGGcBG4QxZ3v7rpzURBg
OE7PCQLHTTE7N3eEW3x09CjQcDEMQS7tkEsfXgu/En2A+U8/4X4YkxUO733t3QEnCo6OngjT
DJOu/J0bn+Cy4xJUG1oWRfPS0xUAbsrgd775bQyR4eJrl595EOgA0AyTrgAIPMFf+it/Gb/a
fObNH9BNIM1w6cp99Y0VfvjjD7n9xV3CU3BA1wCaYdK9I+ztdyhVyzzdaDzz7ZCgA0AzXHru
CLt54xOeLqziFgpcmDjZk+G70tNNIM0Q6dnMn5ubpRFajBeyu95v1Mo8fLhEsZSl5SuuXjp/
bAd0DaAZJj0DYGlpmWw2i+vunhxx3TT5kQJSKVK2OhFhrCiKtDDWMdLSwljHs+sZALZtE0bd
N2izvE6r1aJYyNAKTkYYy7ZtLYx1jLS0MFbCiQljARiGx6Pb63z5j7GrIzw+Ncv4Cevl6iaQ
Zph0C2NtlJk+f41quEzqFBzQAaAZJl0BsHr/DvcjSRabCJ75UKgeBdIMk64AmLn+Jmez2VOZ
BQZdA2iGS/daoGy213XPDB0AmmEy9PaHbgJphslAuW9p4TG37z86EQf6HSvXaE6SgZr6oTJI
27rponnxGagGyDgGESejIq2bQJphIlTCLmGsZqNBpVJhembm0HMCms0mmUwGGEzQaKf9UdHC
WMez0cJY2zY9hbEe3bnFZ1/Mc/baNdLtCx8/uEuuNEl5aZGp2RmeLq/z2pWLwPGEsUzTHCgA
XjVVCKUULT/qEvTSSyESTmxTfLOyzoP5FbK53cekFkdGqK8tkJu5yK3PbnL93CQbnsQ65mI4
pZReDHeEtD6+u8x3P3nM3/rfvnps//RiuG26AiBTHOPLb13j9sPlHR9KHtx/wOzZORYf3GFq
coIHKzXemDLwQn1K5F6eRQ3w8b0V5ldrmKa5q+TWNUDCiS6Ga9TrZDOZjsygECbvfuVrAExO
zey61uvLTc0gxFJy7+kGrpMIPqWc05qnf/npvRzasfA3T+YEmMPQo0CHs7RRZ6qUI4oltaav
A+AE6Zn7Kps1Gptl+hMtHww9EXY4P/rsKV+6PMXcRIGna7Vhu/NS0TMAMtk0luMOf52EhiCM
+ej2Iu9fn2V2osCTleqwXXqp6JnHs9ksqVz2hKa6DnFAN4EO5Ps3n/D2pUnSrs2ZUk7XACdM
z8ZkeWOB+Tt1gq/TmQeo1WrksmlWN6qM5FwaAZSKuWM7oJtA+6OU4vd/9oi/+5ffB2BiJMN6
dbC+mVKKh0ub/PDWAtWGh22ZnBnLc3WuxIUzI5ivaEHUFQBx0GR8+gKNmz/p7AhTkc/qRoXa
Zpk4iHhQN7CVYiSfQUrZOeJo5+ujMojN1kxwv5yWf1tBPcg8xc60Kg0PAeRSNlt4GnIAAAw4
SURBVHEck3YtyjWP/++/f8xXrs1wda50ZP+++/FjfnBrnm+8d5GRnEssFYvrdX7nh3d4slpl
cjTHn//gKldm95fB2ZlWFEukVDj2we2E07rng9j1HAZde3CXP7z1kGsXzuGR1ABSKTZWlxkr
jVKvN0nnU3iB6kynbzVjBlmeYFlW3zaDLoU4LZstjpvW/GqdK3OlXe/9vb/2dZY3GvzBx4/4
j9+5yZ99/zJfu36wZH251uJbHz3gH/zqL+HaZmcpxLVzE/zxdy8ilWKl3OCf/vqP+Jt/4ee4
MD1yoH/3n5b51//tZ0ip+Dv/x/tMju6/h+Q07/lAdmoPUsaq1fJUq9VScsd7vu+rOI5VGIYq
jmMVRbFSSqlqtdqxDcNw79cdSqPR6NtGSqmiKOrbbhD/BrGJ41jFcXzstP79N2+oj+8u9bxW
SqnWKg31j/7Vd1S52jrwe3/ttz5Un9zb/p4oipSUsuu6xfWa+of/8jsqjHr7HoahklKqv/9r
31LLG3X1eHlT/YN/8e1OXjjKbzoKg9hIKfu2k1KqrnARwuD2je/x6//udzuTXEIYOI7TkUAx
DAPTfHXajAurVVZPaV5kJ3fm1zk/Vez5mRCCsUKGD96Y5cPbT/f9jpYfcv9pmevnJw5Nb7qU
Y26ywOeP1w7waYO5iQITIxnOTha5MD3CZwdcP0zWKk02qq0Dr+nZCZ4+c547C/fo/+Su/ul3
OUMvknOwtjvThhDts7uSA+MsMznOJ4wiUk7SLg/jmDhWpBwLL4w6x+1kXJtKIwl9wzB4ulrh
//7ND5ku5fjb/3syG95ohUilGM2nqDZ8IimJIsn0WI6l9Xq7KhaM5NIslxsAFLMuQRRTbfgA
zE7kWd5o0PJDFHB5psSd+TUMYSAMwdRoluVyg5/dW2aimMEPIzaqiV9X50rcfrJOFEvKtRYf
3VkmCGPCWJJxbeYmC53PV8oNwijmN7/3OQBvX5riZ3cXiWMFQvD+9Vm+d+MxKChkXc5NFvh/
/9vHXDs3xuvnxinXPZY36kSx5BfePsu//d0bpByLf/abP+FPvnuRhbUqv/Zby3zwxiznp0f4
6Z0lAN66OMHqZpPF9RpCCP74uxf47sePOvf5l9+7yLc+fADAWCHN3GSRn91dAgVvXRxnudxk
dTO5d9947xLf/PB+cmKogD/1lUv83o/vA8nAwJnxPB/fXUYpyZ/+6hV+7yf3mV+t0vRCvCDi
rYsTGIbB9GiWidEsnz5YQSl49+p07zPCfvSH32KtDt/4s798aBCUNyv8X7/9KQDvv36Ge4sV
lsoNBIL/9Reu8hv/4w5bq+r+3Ncu8f9//x4A5ybzjBXS/Pj2EkIILk0VWNps0myf3vi/vDXL
d28uoFSSgb96dYrvf76IUoozo1nSrsmD5WRI8CtXJrm/XG0f+ga/+OYsP/gieRC2ZfDW+TF+
dn8V0xCcKWWxDIP59TqWafDG2RIPV6o0/QghBO9eGuePPlskjGIqDZ+sbTAzNcryRp3ZsRzT
YzmWN5sIBNdmR3i0WsMLYizT4M1zo3z6eAMBpByLS9NF7i5Wkoecd7FMg3I9CYCpYprVmpeM
vgiYHc3wZK2enHFlm3xyZxHLsbl2dozZUhYJrLUD4NpMkSfrjU5H9Pc/vMfXv3yRbDo5SC5j
m9T8CNMQfPPH9/iFt8+SyyRDGhcmczwtN1EqqUXOjWVZrCSlpGMa5NM2/+dvfMhf/cZbGEoh
jGTNlW2Z/PjmI24+LvOrv/IOhhCUsjblZsi/+Z2P+Ys//xqjWQeMZK1StdZEGAa5tINhGvgt
HzftJoUSIKMIo71uRymFkhKz/bfveVi23SkcG40W2Wy6cwRuHIQYdntVrFIoJTFNi1jGxGHE
StXn17/7GX/9V97hkztPGS8VuH5uHKUkSkoMs712LQx7B8Af/f43kVae97/+/qGyKNVqlWU/
+cKCa+DHEMTJV07mbFbqici6EDCetVlt/52yDBxLsFZt4TgO5c0azVDSCmIEUC5XGRsrYlsm
sZSsrVXIFXLYpkEUhgRhhJNyMYWgVmuSzaawbQspFRsbFcbGkqaDaQg2NmoUR3IopfD9EENA
Ku0mJyBW6mSzaVKujWNbrKyUuXx+Ctcxk4ecNil7Se1y6/4S9VZApp2ZKpt1cvk0jm1jCFhf
r3D5/BQNL6DW8KnVm0yMFUEIWs0k86bSLoYQBJ5HaSRPw4+QSuHVm0xMFGkFMX4QMp5zmBxP
OqM510zOSQ4SP8azNhvNEKmSkQ9LxTxYbeCHMUpJarUmY6UCtmVSSFlMlXK0wsR2Imuz2gg6
AbDzGdmmIOearNQC1itNarUmrmsTxopIKoqOYHqq1Hn2O23XKw0WljaZnhyh3gqwkGTSLht1
j2zaZX1tk3wxR8MLcW2T1dVNJidHyacd6k2fzWoDN53CNASh55PLpbEsC6kU9WodN5MmiiWu
bbG2tsmFs5NJDVht4nk+2VwmOXK31uD83AQTI9mOjz+8s0q16RFHMQaK8VKBzbpHo97sDgCl
fG785Aar1Ra/+Mu/eGgNcNxTIn3fx3XdvmzUK7gf4CRtXtbVoIPsB+h6QvOffk7TdZiYGN93
KYTfrLG+eTIzkoOM92o0J0VXuDiZPFemp0gj9l0KsbiyjpSS0UIWKSWtVgvDMDpr+w3D2FUK
HvQ6CAJM0zzy9Vul1ta2ueSs2+0tfge93pooOex62N5zEMcxYRh2vX/Q650l7FGuPygtY+vE
931eh2GI4zgHXrP39c60+3lWcRxj2/aRr98iDMMDrzFNs1MQmqbZyRN73z/s9db9OOpviuO4
OwCmLl+isrbE/dU6b1+/svfjhDigGdDJOKlUqvOl/VZdQoi+T4rXTaBtTNN8rptAR93fa9vb
vU0hRCedne8f9HqQPKH22xBz69ObLMwvkyoWuTrTPX58/tKVTidq5+bqQTZa7yx1+2GQtE7T
Zuf/zzqtQW1OI60tu9NIZ5C0egbA+YtzVH2Lc1Nj+yRiMKB/Gs1zRc86uuEFlBeX4BRme09i
IkyjGZTu1aBhwMTUWd6+1sIH+hug7B89CqQZJl0BEPpNHj9+DNkc/an1aDQvHj2V4fph55Ca
lPJU1NB2Du31wyD+DWKzNbc4yIDAaf2mQQcsnud73m+eUEr1XgoxKDqDJWj/Tt/muQgAjeZF
48QEZjZWl2hGgur6Em5ujMsXDt6lBCCjgE9v3GB0+jxnz4wfLZ3lpzSxqa4+PXI69coGd+4+
IlPIEEaCt66/dnhCKubB3ds0Aknk+cxcvsbkyOGn51TWlni4tIYpY7KjE1w8O3OozdKje1Ri
GzNqECibN67tMwG5g0ZljfsLGxSzFhuVBm++9Ra2cXiJPv/oHqvlKqYSFCfPcH728GM/H979
gnIjJOOAsrO83taEPYjlhUcsrZRJ5bO0WiFfeus6xiE1zqef3uDS7DRfPH6C4xbwmk2+/O7b
mAfY1SsbrFaa5FMBgZygvnKT0XPvMDGS3temtrnGWi0gbYQno3yy/HSB3MgEtiHJ5EcxOZo+
o1IxI2OTxGFw5LRGSmPYhiKTL2EcWblIMHvhAiknRTZ9tGP/lBI4qTQGERNTUwTBUXxUzC8s
0mxUyY2MI+TR7oOdSlMvr6HsDGn3aP2hwGvh1zdZrviMjeSIj6gtUMjluHjpAoWxKVR0tPsu
DANQ2Ok87hGLzNLYBGGrhi9NRvJpjtLMGB+fIPQDZmanqdUDJkbyhz7hXGGUlGNRGp/AUIrJ
0QKBd/DvyhdHSdkmhmGdTA0wNTPL6tICDV8xknFw870n0PZiWClc22B0YvrIaW2sr1H3FaMZ
Bze//wbunSgVs1mucGZyDD8+YodbJBttzl28RrW8zvRE732ye43efOddPK9FvbJJdvRohypn
czmmZuYYzVr4Rxx4HpmcZTqAiYkxNqpNXOto7XknU8RNuQSNRYoTh9dOAJOTk1iZgLwrUPYR
z5ATMH3hNaZKOdZr/qGlP0iatQrm2BRhs8FX37nM0nrl0OX4lfJasvdABnixjbTHmZkqHGiz
ubFOrd4k6wrdB9C82rw6G3s1mh7oANC80ugA0LzQfPj9H+Apxb0vbrG5ucHtR/srZPRC62xr
XmgUgIq4e/sGP/vRH1F25rh0fubIGVt3gjUvNNWNFebX6rhGhBNVWYgn+ODN80e2/5/3MvBe
SVWLQQAAAABJRU5ErkJggg==
</thumbnail>
</thumbnails>
</workbook>