forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCM.py
65 lines (53 loc) · 2.41 KB
/
MCM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch.nn as nn
import torch
import torch.nn.functional as F
# 论文:MAGNet: Multi-scale Awareness and Global fusion Network for RGB-D salient object detection | KBS
# 论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0950705124007603
# github地址:https://github.com/mingyu6346/MAGNet
TRAIN_SIZE = 384
class MCM(nn.Module):
def __init__(self, inc, outc):
super().__init__()
self.upsample2 = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
self.rc = nn.Sequential(
nn.Conv2d(in_channels=inc, out_channels=inc, kernel_size=3, padding=1, stride=1, groups=inc),
nn.BatchNorm2d(inc),
nn.GELU(),
nn.Conv2d(in_channels=inc, out_channels=outc, kernel_size=1, stride=1),
nn.BatchNorm2d(outc),
nn.GELU()
)
self.predtrans = nn.Sequential(
nn.Conv2d(in_channels=outc, out_channels=outc, kernel_size=3, padding=1, groups=outc),
nn.BatchNorm2d(outc),
nn.GELU(),
nn.Conv2d(in_channels=outc, out_channels=1, kernel_size=1)
)
self.rc2 = nn.Sequential(
nn.Conv2d(in_channels=outc * 2, out_channels=outc * 2, kernel_size=3, padding=1, groups=outc * 2),
nn.BatchNorm2d(outc * 2),
nn.GELU(),
nn.Conv2d(in_channels=outc * 2, out_channels=outc, kernel_size=1, stride=1),
nn.BatchNorm2d(outc),
nn.GELU()
)
def forward(self, x1, x2):
x2_upsample = self.upsample2(x2) # 上采样
x2_rc = self.rc(x2_upsample) # 减少通道数
shortcut = x2_rc
x_cat = torch.cat((x1, x2_rc), dim=1) # 拼接
x_forward = self.rc2(x_cat) # 减少通道数2
x_forward = x_forward + shortcut
pred = F.interpolate(self.predtrans(x_forward), TRAIN_SIZE, mode="bilinear", align_corners=True) # 预测图
return pred, x_forward
if __name__ == '__main__':
inc = 64 # 输入通道数
outc = 32 # 输出通道数
mcm = MCM(inc=inc, outc=outc)
x1 = torch.randn(1, outc, 96, 96) # Batch size=1, Channels=outc, Height=96, Width=96
x2 = torch.randn(1, inc, 48, 48) # Batch size=1, Channels=inc, Height=48, Width=48
pred, x_forward = mcm(x1, x2)
print(x1.size())
print(x2.size())
print(pred.size())
print(x_forward.size())