forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTIF.py
156 lines (124 loc) · 5.3 KB
/
TIF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
from torch import nn, einsum
from einops import rearrange
#论文:DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation
#论文地址:https://arxiv.org/abs/2106.06716
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
b, n, _ = x.shape
h = self.heads
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = dots.softmax(dim=-1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class CrossAttention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.to_k = nn.Linear(dim, inner_dim , bias=False)
self.to_v = nn.Linear(dim, inner_dim , bias = False)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x_qkv):
b, n, _ = x_qkv.shape
h = self.heads
k = self.to_k(x_qkv)
k = rearrange(k, 'b n (h d) -> b h n d', h = h)
v = self.to_v(x_qkv)
v = rearrange(v, 'b n (h d) -> b h n d', h = h)
q = self.to_q(x_qkv[:, 0].unsqueeze(1))
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = dots.softmax(dim=-1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class TIF(nn.Module):
def __init__(self, dim_s, dim_l):
super().__init__()
self.transformer_s = Transformer(dim=dim_s, depth=1, heads=3, dim_head=32, mlp_dim=128)
self.transformer_l = Transformer(dim=dim_l, depth=1, heads=1, dim_head=64, mlp_dim=256)
self.norm_s = nn.LayerNorm(dim_s)
self.norm_l = nn.LayerNorm(dim_l)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.linear_s = nn.Linear(dim_s, dim_l)
self.linear_l = nn.Linear(dim_l, dim_s)
def forward(self, e, r):
b_e, c_e, h_e, w_e = e.shape
e = e.reshape(b_e, c_e, -1).permute(0, 2, 1)
b_r, c_r, h_r, w_r = r.shape
r = r.reshape(b_r, c_r, -1).permute(0, 2, 1)
e_t = torch.flatten(self.avgpool(self.norm_l(e).transpose(1, 2)), 1)
r_t = torch.flatten(self.avgpool(self.norm_s(r).transpose(1, 2)), 1)
e_t = self.linear_l(e_t).unsqueeze(1)
r_t = self.linear_s(r_t).unsqueeze(1)
r = self.transformer_s(torch.cat([e_t, r], dim=1))[:, 1:, :]
e = self.transformer_l(torch.cat([r_t, e], dim=1))[:, 1:, :]
e = e.permute(0, 2, 1).reshape(b_e, c_e, h_e, w_e)
r = r.permute(0, 2, 1).reshape(b_r, c_r, h_r, w_r)
return e + r
if __name__ == '__main__':
model = TIF(dim_s=64, dim_l=64)
input1 = torch.randn(1, 64, 64, 64) # 例如来自小尺度特征的图像
input2 = torch.randn(1, 64, 64, 64) # 例如来自大尺度特征的图像
# 前向传播获取输出
output = model(input1, input2)
# 打印输入和输出的形状
print(input1.size())
print(input2.size())
print(output.size())