forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf_sampling.py
56 lines (47 loc) · 1.58 KB
/
f_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch as th
import torch.nn as nn
#论文:Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement (ICASSP 2022)
#论文地址:https://ieeexplore.ieee.org/document/9746610
class FD(nn.Module):
def __init__(self, cin, cout, K=(7, 1), S=(4, 1), P=(2, 0)):
super(FD, self).__init__()
self.fd = nn.Sequential(
nn.Conv2d(cin, cout, K, S, P, groups=2),
nn.BatchNorm2d(cout),
nn.PReLU(cout)
)
def forward(self, x):
return self.fd(x)
class FU(nn.Module):
def __init__(self, cin, cout, K=(7, 1), S=(4, 1), P=(2, 0), O=(1, 0)):
super(FU, self).__init__()
self.pconv1 = nn.Sequential(
nn.Conv2d(cin*2, cin, (1, 1)),
nn.BatchNorm2d(cin),
nn.Tanh(),
)
self.pconv2 = nn.Sequential(
nn.Conv2d(cin, cout, (1, 1)),
nn.BatchNorm2d(cout),
nn.PReLU(cout),
)
# 22/06/13 update, add groups = 2
self.conv3 = nn.Sequential(
nn.ConvTranspose2d(cout, cout, K, S, P, O, groups=2),
nn.BatchNorm2d(cout),
nn.PReLU(cout)
)
def forward(self, fu, fd):
"""
fu, fd: B C F T
"""
outs = self.pconv1(th.cat([fu, fd], dim=1))*fd
outs = self.pconv2(outs)
outs = self.conv3(outs)
return outs
def test_fd():
net = FD(4, 8)
inps = th.randn(3, 4, 256, 101)
print(net(inps).shape)
if __name__ == "__main__":
test_fd()