forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphase_encoder.py
125 lines (107 loc) · 4.22 KB
/
phase_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import torch.nn.functional as F
#论文:Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement (ICASSP 2022)
#论文地址:https://ieeexplore.ieee.org/document/9746610
class ComplexConv2d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
dilation=1,
groups=1,
causal=True,
complex_axis=1,
):
super(ComplexConv2d, self).__init__()
self.in_channels = in_channels//2
self.out_channels = out_channels//2
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.causal = causal
self.groups = groups
self.dilation = dilation
self.complex_axis = complex_axis
self.real_conv = nn.Conv2d(self.in_channels, self.out_channels, kernel_size, self.stride, padding=[
self.padding[0], 0], dilation=self.dilation, groups=self.groups)
self.imag_conv = nn.Conv2d(self.in_channels, self.out_channels, kernel_size, self.stride, padding=[
self.padding[0], 0], dilation=self.dilation, groups=self.groups)
nn.init.normal_(self.real_conv.weight.data, std=0.05)
nn.init.normal_(self.imag_conv.weight.data, std=0.05)
nn.init.constant_(self.real_conv.bias, 0.)
nn.init.constant_(self.imag_conv.bias, 0.)
def forward(self, inputs):
if self.padding[1] != 0 and self.causal:
inputs = F.pad(inputs, [self.padding[1], 0, 0, 0])
else:
inputs = F.pad(inputs, [self.padding[1], self.padding[1], 0, 0])
if self.complex_axis == 0:
real = self.real_conv(inputs)
imag = self.imag_conv(inputs)
real2real, imag2real = torch.chunk(real, 2, self.complex_axis)
real2imag, imag2imag = torch.chunk(imag, 2, self.complex_axis)
else:
if isinstance(inputs, torch.Tensor):
real, imag = torch.chunk(inputs, 2, self.complex_axis)
real2real = self.real_conv(real,)
imag2imag = self.imag_conv(imag,)
real2imag = self.imag_conv(real)
imag2real = self.real_conv(imag)
real = real2real - imag2imag
imag = real2imag + imag2real
out = torch.cat([real, imag], self.complex_axis)
return out
def complex_cat(inps, dim=1):
reals, imags = [], []
for inp in inps:
real, imag = inp.chunk(2, dim)
reals.append(real)
imags.append(imag)
reals = torch.cat(reals, dim)
imags = torch.cat(imags, dim)
return reals, imags
class ComplexLinearProjection(nn.Module):
def __init__(self, cin):
super(ComplexLinearProjection, self).__init__()
self.clp = ComplexConv2d(cin, cin)
def forward(self, real, imag):
"""
real, imag: B C F T
"""
inputs = torch.cat([real, imag], 1)
outputs = self.clp(inputs)
real, imag = outputs.chunk(2, dim=1)
outputs = torch.sqrt(real**2+imag**2+1e-8)
return outputs
class PhaseEncoder(nn.Module):
def __init__(self, cout, n_sig, cin=2, alpha=0.5):
super(PhaseEncoder, self).__init__()
self.complexnn = nn.ModuleList()
for _ in range(n_sig):
self.complexnn.append(
nn.Sequential(
nn.ConstantPad2d((2, 0, 0, 0), 0.0),
ComplexConv2d(cin, cout, (1, 3))
)
)
self.clp = ComplexLinearProjection(cout*n_sig)
self.alpha = alpha
def forward(self, cspecs):
"""
cspec: B C F T
"""
outs = []
for idx, layer in enumerate(self.complexnn):
outs.append(layer(cspecs[idx]))
real, imag = complex_cat(outs, dim=1)
amp = self.clp(real, imag)
return amp**self.alpha
if __name__ == "__main__":
block = PhaseEncoder(cout=4, n_sig=1)
inps = torch.randn(3, 2, 769, 126) # B C H W
outs = block([inps])
print(outs.size())