-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
212 lines (169 loc) · 7.26 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import cv2
import numpy as np
import argparse
import time
parser = argparse.ArgumentParser()
parser.add_argument('--webcam', help="True/False", default=False)
parser.add_argument('--play_video', help="Tue/False", default=False)
parser.add_argument('--image', help="Tue/False", default=False)
parser.add_argument('--video_path', help="Path of video file", default="demo1.mp4")
parser.add_argument('--image_path', help="Path of image to detect objects", default="venv/images/armas (1).jpg")
parser.add_argument('--verbose', help="To print statements", default=True)
args = parser.parse_args()
# Load yolo
def load_yolo():
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("obj.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layers_names = net.getLayerNames()
output_layers = [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
return net, classes, colors, output_layers
def load_image(img):
# image loading
img = cv2.imread("C:/Users/jonna/PycharmProjects/pythongun/images")
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape
return img, height, width, channels
def start_webcam():
cap = cv2.VideoCapture(0)
return cap
def display_blob(blob):
'''
Three images each for RED, GREEN, BLUE channel
'''
for b in blob:
for n, img in enumerate(b):
cv2.imshow(str(n), img)
def detect_objects(img, net, outputLayers):
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
outputs = net.forward(outputLayers)
return blob, outputs
def get_box_dimensions(outputs, height, width):
boxes = []
confs = []
class_ids = []
for output in outputs:
for detect in output:
scores = detect[5:]
class_id = np.argmax(scores)
conf = scores[class_id]
if conf > 0.3:
center_x = int(detect[0] * width)
center_y = int(detect[1] * height)
w = int(detect[2] * width)
h = int(detect[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confs.append(float(conf))
class_ids.append(class_id)
return boxes, confs, class_ids
def draw_labels(boxes, confs, colors, class_ids, classes, img):
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y - 5), font, 1, color, 1)
img = cv2.resize(img, (800, 600))
cv2.imshow("Image", img)
def image_detect(img):
model, classes, colors, output_layers = load_yolo()
image, height, width, channels = load_image(img)
blob, outputs = detect_objects(image, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, image)
while True:
key = cv2.waitKey(1)
if key == 27:
break
def webcam_detect():
model, classes, colors, output_layers = load_yolo()
cap = start_webcam()
while True:
_, frame = cap.read()
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
def start_video(video_play):
model, classes, colors, output_layers = load_yolo()
cap = cv2.VideoCapture("demo1.mp4")
while True:
_, frame = cap.read()
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
def detect_gun_firearms(boxes, confs, class_ids, classes):
gun_positions = []
firing_positions = []
for i in range(len(boxes)):
if classes[class_ids[i]] == 'gun':
x, y, w, h = boxes[i]
gun_positions.append((x, y, x + w, y + h)) # Appending gun bounding box coordinates
if classes[class_ids[i]] == 'person':
x, y, w, h = boxes[i]
firing_positions.append((x, y, x + w, y + h)) # Appending person bounding box coordinates
return gun_positions, firing_positions
def detect_from_input(input_path):
model, classes, colors, output_layers = load_yolo()
if input_path.endswith(('jpg', 'png', 'jpeg')): # For image paths
image = cv2.imread(input_path)
image, height, width, channels = load_image(image)
blob, outputs = detect_objects(image, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, image)
gun_positions, firing_positions = detect_gun_firearms(boxes, confs, class_ids, classes)
print("Gun positions:", gun_positions)
print("Firing positions:", firing_positions)
else: # For video paths or webcam
if input_path.isdigit(): # Check if input is a digit (for webcam)
cap = cv2.VideoCapture(int(input_path))
else: # Assume input is a video file path
cap = cv2.VideoCapture(input_path)
while True:
_, frame = cap.read()
if frame is None:
break
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
draw_labels(boxes, confs, colors, class_ids, classes, frame)
gun_positions, firing_positions = detect_gun_firearms(boxes, confs, class_ids, classes)
print("Gun positions:", gun_positions)
print("Firing positions:", firing_positions)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
if __name__ == '__main__':
if args.image:
img_path = args.image_path
if args.verbose:
print("Opening " + img_path + " .... ")
detect_from_input(img_path)
if args.play_video:
video_path = args.video_path
if args.verbose:
print('Opening ' + video_path + " .... ")
detect_from_input(video_path)
if args.webcam:
if args.verbose:
print('---- Starting Web Cam object detection ----')
detect_from_input(args.webcam)
cv2.destroyAllWindows()