-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtinyqr.h
472 lines (462 loc) · 16.4 KB
/
tinyqr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Tiny QR solver, header only library
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
//
// Copyright (C) 2023- Juraj Szitas
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef TINYQR_H_
#define TINYQR_H_
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>
// inlining
#define INLINE_THIS
#if defined(__clang__) || defined(__GNUC__)
#undef INLINE_THIS
#define INLINE_THIS __attribute__((always_inline))
#elif defined(_MSC_VER)
#undef INLINE_THIS
#define INLINE_THIS __forceinline
#endif
// restrict
#define RESTRICT_THIS
#if defined(__clang__) || defined(__GNUC__)
#undef RESTRICT_THIS
#define RESTRICT_THIS __restrict__
#elif defined(_MSC_VER)
#undef RESTRICT_THIS
#define RESTRICT_THIS __restrict
#endif
// vectorised math macros
#if !defined(NO_MANUAL_VECTORIZATION) && defined(__GNUC__) && \
(__GNUC__ > 6) && defined(__AVX512F__)
#define USE_AVX512
#endif
#if !defined(NO_MANUAL_VECTORIZATION) && defined(__AVX__) && \
defined(__SSE__) && defined(__SSE2__) && defined(__SSE3__)
#define USE_AVX
#endif
#if defined(USE_AVX) || defined(USE_AVX512)
#if defined(_MSC_VER)
#include <intrin.h>
#elif defined(__GNUC__)
#include <immintrin.h> //<x86intrin.h>
#endif
#endif
namespace tinyqr::internal {
// since we are using 1/sqrt(x) here - default
template <typename scalar_t>
inline INLINE_THIS scalar_t inv_sqrt(scalar_t x) {
return 1.0 / std::sqrt(x);
}
// fast inverse square root - might buy us a tiny bit, and I have been looking
// for forever to use this :)
template <>
[[maybe_unused]] inline INLINE_THIS float inv_sqrt(float x) {
long i = *reinterpret_cast<long *>(&x); // NOLINT [runtime/int]
i = 0x5f3759df - (i >> 1);
return *reinterpret_cast<float *>(&i);
}
template <typename scalar_t>
inline INLINE_THIS std::tuple<scalar_t, scalar_t> givens_rotation(
const scalar_t a, const scalar_t b) {
if (std::abs(b) > std::abs(a)) {
const scalar_t r = a / b;
const auto s = static_cast<scalar_t>(inv_sqrt(std::pow(r, 2) + 1.0));
return {s * r, s};
}
const scalar_t r = b / a;
const auto c = static_cast<scalar_t>(inv_sqrt(std::pow(r, 2) + 1.0));
return {c, c * r};
}
template <typename scalar_t>
[[maybe_unused]] inline INLINE_THIS void tA_matmul_B_to_C(
std::vector<scalar_t> &RESTRICT_THIS A,
std::vector<scalar_t> &RESTRICT_THIS B,
std::vector<scalar_t> &RESTRICT_THIS C, const size_t ncol) {
for (size_t k = 0; k < ncol; k++) {
for (size_t l = 0; l < ncol; l++) {
scalar_t accumulator = 0.0;
for (size_t m = 0; m < ncol; m++) {
accumulator += A[k * ncol + m] * B[l * ncol + m];
}
C[l * ncol + k] = accumulator;
}
}
}
// transpose a square matrix in place
template <typename scalar_t>
inline INLINE_THIS void transpose_square(std::vector<scalar_t> &X,
const size_t p) {
for (size_t i = 0; i < p; i++) {
for (size_t j = i + 1; j < p; j++) {
std::swap(X[(j * p) + i], X[(i * p) + j]);
}
}
}
// TODO(JSzitas): All of the following code supports SIMD
// and this impl should make it a lot easier
template <typename scalar_t>
inline INLINE_THIS void rotate_matrix(scalar_t *RESTRICT_THIS lower,
scalar_t *RESTRICT_THIS upper,
const scalar_t c, const scalar_t s,
size_t p) {
for (; p > 0; --p) {
const scalar_t temp_1 = *lower;
const scalar_t temp_2 = *upper;
*lower = c * temp_1 + s * temp_2;
*upper = -s * temp_1 + c * temp_2;
++lower;
++upper;
}
}
#ifdef USE_AVX
template <>
inline INLINE_THIS void rotate_matrix(float *RESTRICT_THIS lower,
float *RESTRICT_THIS upper, const float c,
const float s, size_t p) {
if (p > 7) {
const __m256 c_ = _mm256_set1_ps(c);
const __m256 s_ = _mm256_set1_ps(s);
__m256 res = _mm256_setzero_ps();
for (; p > 7; p -= 8) {
// set current register values
const auto lower_ = _mm256_loadu_ps(lower);
const auto upper_ = _mm256_loadu_ps(upper);
// updates on lower
res = _mm256_add_ps(_mm256_mul_ps(c_, lower_), _mm256_mul_ps(s_, upper_));
// store in lower
_mm256_storeu_ps(lower, res);
// updates on upper
res = _mm256_sub_ps(_mm256_mul_ps(c_, upper_), _mm256_mul_ps(s_, lower_));
// store in upper
_mm256_storeu_ps(upper, res);
lower += 8;
upper += 8;
}
}
for (; p > 0; --p) {
const float temp_1 = *lower;
const float temp_2 = *upper;
*lower = c * temp_1 + s * temp_2;
*upper = -s * temp_1 + c * temp_2;
++lower;
++upper;
}
}
#endif
#ifdef USE_AVX_512
template <>
inline INLINE_THIS void rotate_matrix(float *RESTRICT_THIS lower,
float *RESTRICT_THIS upper, const float c,
const float s, size_t p) {
if (p > 15) {
const __m512 c_ = _mm512_set1_ps(c);
const __m512 s_ = _mm512_set1_ps(s);
__m256 res = _mm512_setzero_ps();
for (; p > 15; p -= 16) {
// set current register values
const auto lower_ = _mm512_loadu_ps(lower);
const auto upper_ = _mm512_loadu_ps(upper);
// updates on lower
res = _mm512_add_ps(_mm512_mul_ps(c_, lower_), _mm512_mul_ps(s_, upper_));
// store in lower
_mm512_storeu_ps(lower, res);
// updates on upper
res = _mm512_sub_ps(_mm512_mul_ps(c_, upper_), _mm512_mul_ps(s_, lower_));
// store in upper
_mm512_storeu_ps(upper, res);
lower += 16;
upper += 16;
}
}
for (; p > 0; --p) {
const float temp_1 = *lower;
const float temp_2 = *upper;
*lower = c * temp_1 + s * temp_2;
*upper = -s * temp_1 + c * temp_2;
++lower;
++upper;
}
}
#endif
template <typename scalar_t>
inline INLINE_THIS std::vector<scalar_t> make_identity(const size_t n) {
std::vector<scalar_t> result(n * n, static_cast<scalar_t>(0.0));
for (size_t i = 0; i < n; i++) result[i * n + i] = static_cast<scalar_t>(1.0);
return result;
}
template <typename scalar_t, const bool report_success = true,
const size_t tune = 1000>
[[maybe_unused]] void validate_qr(const std::vector<scalar_t> &RESTRICT_THIS X,
const std::vector<scalar_t> &RESTRICT_THIS Q,
const std::vector<scalar_t> &RESTRICT_THIS R,
const size_t n, const size_t p) {
// constant factor here added since epsilon is too small otherwise
constexpr auto eps =
std::numeric_limits<scalar_t>::epsilon() * static_cast<scalar_t>(tune);
// this trick is done since some third party limited precision floats
// do not provide an impl of the constexpr numeric limits epsilon function
// const auto eps = static_cast<scalar_t>(eps_);
// Matrix multiplication QR
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < p; ++j) {
auto tmp = scalar_t(0.0);
for (size_t k = 0; k < p; ++k) {
tmp += Q[k * n + i] * R[j * p + k];
}
// Compare to original matrix X
if (std::abs(X[j * n + i] - tmp) > eps) {
std::cout << "Error in {validate_qr}, " << tmp << " != " << X[i * p + j]
<< " diff: " << std::abs(X[j * n + i] - tmp)
<< " eps: " << eps << "\n";
std::cout << "Failed to recreate input from QR matrices for size " << n
<< ", " << p << "\n";
return;
}
}
}
if constexpr (report_success) {
std::cout << "Validation of QR successful for size " << n << ", " << p
<< std::endl;
}
}
template <typename scalar_t, const bool cleanup = false>
void qr_impl(std::vector<scalar_t> &RESTRICT_THIS Q,
std::vector<scalar_t> &RESTRICT_THIS R, const size_t n,
const size_t p, const scalar_t tol) {
// the key to optimizing this is probably to take R as R transposed - most
// likely a lot of work is done just in the k loops, which is probably a good
// place to optimize
for (size_t j = 0; j < p; j++) {
for (size_t i = n - 1; i > j; --i) {
// using tuples and structured bindings should make this fairly ok
// performance wise
// check if R[j * n + i] - is not zero; if it is we can skip this
// iteration
// if (std::abs(R[i * p + j]) <= std::numeric_limits<scalar_t>::min())
// continue;
const auto [c, s] = givens_rotation(R[(i - 1) * p + j], R[i * p + j]);
// you can make the matrix multiplication implicit, as the givens rotation
// only impacts a moving 2x2 block
// R is transposed
rotate_matrix(R.data() + (i - 1) * p, R.data() + i * p, c, s, p);
rotate_matrix(Q.data() + (i - 1) * n, Q.data() + i * n, c, s, n);
}
}
// clean up R - particularly under the diagonal - only useful if you are
// interested in the actual decomposition
if constexpr (cleanup) {
for (auto &val : R) {
val = std::abs(val) < tol ? 0.0 : val;
}
}
}
} // namespace tinyqr::internal
namespace tinyqr {
template <typename scalar_t>
struct QR {
std::vector<scalar_t> Q;
std::vector<scalar_t> R;
};
template <typename scalar_t>
[[maybe_unused]] QR<scalar_t> qr_decomposition(const std::vector<scalar_t> &X,
const size_t n, const size_t p,
const scalar_t tol = 1e-8) {
// initialize Q and R
std::vector<scalar_t> Q = tinyqr::internal::make_identity<scalar_t>(n);
// initialize R as transposed
std::vector<scalar_t> R(X.size(), static_cast<scalar_t>(0.0));
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < p; j++) {
R[i * p + j] = X[j * n + i];
}
}
tinyqr::internal::qr_impl<scalar_t, true>(Q, R, n, p, tol);
// we do not actually need to manipulate more than pxp block of R
tinyqr::internal::transpose_square(R, p);
Q.resize(n * p);
R.resize(p * p);
return {Q, R};
}
template <typename scalar_t>
struct eigendecomposition {
std::vector<scalar_t> eigenvals;
std::vector<scalar_t> eigenvecs;
};
template <typename scalar_t>
[[maybe_unused]] eigendecomposition<scalar_t> qr_algorithm(
const std::vector<scalar_t> &A, const size_t max_iter = 25,
const scalar_t tol = 1e-8) {
auto Ak = A;
// A must be square
const size_t n = std::sqrt(A.size());
std::vector<scalar_t> QQ(n * n, 0.0);
for (size_t i = 0; i < n; i++) QQ[i * n + i] = 1.0;
// initialize Q and R
std::vector<scalar_t> Q(n * n, 0.0);
for (size_t i = 0; i < n; i++) Q[i * n + i] = 1.0;
std::vector<scalar_t> R(n * n); // = Ak;
std::vector<scalar_t> temp(Q.size());
for (size_t i = 0; i < max_iter; i++) {
// reset Q and R, G gets reset inside qr_impl
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < n; k++) {
// probably a decent way to reset to a diagonal matrix
Q[j * n + k] = static_cast<scalar_t>(k == j);
R[j * n + k] = Ak[j * n + k];
}
}
// call QR decomposition
tinyqr::internal::qr_impl<scalar_t, false>(Q, R, n, n, tol);
// note QR decomposition returns Rt, not R!!!
tinyqr::internal::tA_matmul_B_to_C<scalar_t>(R, Q, Ak, n);
// overwrite QQ in place
size_t p = 0;
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < n; k++) {
temp[p] = 0;
for (size_t l = 0; l < n; l++) {
temp[p] += QQ[l * n + k] * Q[j * n + l];
}
p++;
}
}
// write to A directly
for (size_t k = 0; k < QQ.size(); k++) {
QQ[k] = temp[k];
}
}
// diagonal elements of Ak are eigenvalues - we can just shuffle elements of A
// and resize
for (size_t i = 1; i < n; i++) {
Ak[i] = Ak[i * n + i];
}
Ak.resize(n);
return {Ak, QQ};
}
template <typename scalar_t>
class [[maybe_unused]] QRSolver {
const size_t n;
std::vector<scalar_t> Ak, QQ, Q, R, temp, eigval;
public:
[[maybe_unused]] explicit QRSolver<scalar_t>(const size_t n) : n(n) {
this->Ak = std::vector<scalar_t>(n * n);
this->QQ = std::vector<scalar_t>(n * n, 0.0);
for (size_t i = 0; i < n; i++) this->QQ[i * n + i] = 1.0;
// initialize Q and R
this->Q = std::vector<scalar_t>(n * n, 0.0);
for (size_t i = 0; i < n; i++) this->Q[i * n + i] = 1.0;
this->R = std::vector<scalar_t>(n * n);
this->temp = std::vector<scalar_t>(n * n);
this->eigval = std::vector<scalar_t>(n);
}
[[maybe_unused]] void solve(const std::vector<scalar_t> &A,
const size_t max_iter = 25,
const scalar_t tol = 1e-8) {
this->Ak = A;
// in case we need to reset QQ
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < n; j++) {
this->QQ[i * n + j] = static_cast<scalar_t>(i == j);
}
}
for (size_t i = 0; i < max_iter; i++) {
// reset Q and R, G gets reset inside qr_impl
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < n; k++) {
// probably a decent way to reset to a diagonal matrix
Q[j * n + k] = static_cast<scalar_t>(k == j);
R[j * n + k] = Ak[j * n + k];
}
}
// call QR decomposition
tinyqr::internal::qr_impl<scalar_t, false>(Q, R, n, n, tol);
// note QR decomposition returns Qt, not Q!!!
tinyqr::internal::tA_matmul_B_to_C<scalar_t>(R, Q, Ak, n);
// overwrite QQ in place
size_t p = 0;
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < n; k++) {
temp[p] = 0;
for (size_t l = 0; l < n; l++) {
temp[p] += QQ[l * n + k] * Q[j * n + l];
}
p++;
}
}
// write to A colwise - i.e. directly
for (size_t k = 0; k < QQ.size(); k++) {
QQ[k] = temp[k];
}
}
for (size_t i = 0; i < n; i++) {
eigval[i] = Ak[i * n + i];
}
}
[[maybe_unused]] const std::vector<scalar_t> &eigenvalues() const {
return eigval;
}
[[maybe_unused]] const std::vector<scalar_t> &eigenvectors() const {
return this->QQ;
}
};
// Function for back substitution using QR decomposition result
// this does not require any temporaries
template <typename scalar_t>
std::vector<scalar_t> back_solve(const std::vector<scalar_t> &RESTRICT_THIS Q,
const std::vector<scalar_t> &RESTRICT_THIS R,
const std::vector<scalar_t> &RESTRICT_THIS y,
const size_t nrow, const size_t ncol) {
std::vector<scalar_t> result(ncol, 0.0);
for (size_t i = ncol; i-- > 0;) {
scalar_t temp = 0.0;
// this might benefit from transposes
for (size_t j = i + 1; j < ncol; ++j) {
temp += R[j * ncol + i] * result[j];
}
scalar_t y_tmp = 0;
for (size_t j = 0; j < nrow; ++j) {
// product Q'y need not be computed ahead of time; we can lazily compute
// coefficient by coefficient, requiring only one temporary stack
// allocated variable
y_tmp += Q[i * nrow + j] * y[j];
}
result[i] = (y_tmp - temp) / R[i * ncol + i];
}
return result;
}
template <typename scalar_t>
[[maybe_unused]] std::vector<scalar_t> lm(
const std::vector<scalar_t> &RESTRICT_THIS X,
const std::vector<scalar_t> &RESTRICT_THIS y, const scalar_t tol = 1e-12) {
const size_t nrow = y.size();
const size_t ncol = X.size() / nrow;
// compute QR decomposition
const auto qr = tinyqr::qr_decomposition(X, nrow, ncol, tol);
// solve Rx = Q'y
return back_solve(qr.Q, qr.R, y, nrow, ncol);
}
} // namespace tinyqr
#endif // TINYQR_H_"