forked from mosaicml/composer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler_demo.py
106 lines (86 loc) · 2.77 KB
/
profiler_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Copyright 2022 MosaicML Composer authors
# SPDX-License-Identifier: Apache-2.0
"""Profiling Example.
For a walk-through of this example, please see the `profiling guide</trainer/performance_tutorials/profiling>`_.
"""
# [imports-start]
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from composer import Trainer
from composer.models.tasks import ComposerClassifier
from composer.profiler import JSONTraceHandler, cyclic_schedule
from composer.profiler.profiler import Profiler
# [imports-end]
# [dataloader-start]
# Specify Dataset and Instantiate DataLoader
batch_size = 2048
data_directory = '~/datasets'
mnist_transforms = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(data_directory, train=True, download=True, transform=mnist_transforms)
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=False,
drop_last=True,
pin_memory=True,
persistent_workers=True,
num_workers=8,
)
# [dataloader-end]
# Instantiate Model
class Model(nn.Module):
"""Toy convolutional neural network architecture in pytorch for MNIST."""
def __init__(self, num_classes: int = 10):
super().__init__()
self.num_classes = num_classes
self.conv1 = nn.Conv2d(1, 16, (3, 3), padding=0)
self.conv2 = nn.Conv2d(16, 32, (3, 3), padding=0)
self.bn = nn.BatchNorm2d(32)
self.fc1 = nn.Linear(32 * 16, 32)
self.fc2 = nn.Linear(32, num_classes)
def forward(self, x):
out = self.conv1(x)
out = F.relu(out)
out = self.conv2(out)
out = self.bn(out)
out = F.relu(out)
out = F.adaptive_avg_pool2d(out, (4, 4))
out = torch.flatten(out, 1, -1)
out = self.fc1(out)
out = F.relu(out)
return self.fc2(out)
model = ComposerClassifier(module=Model(num_classes=10))
# [trainer-start]
# Instantiate the trainer
composer_trace_dir = 'composer_profiler'
torch_trace_dir = 'torch_profiler'
trainer = Trainer(
model=model,
train_dataloader=train_dataloader,
eval_dataloader=train_dataloader,
max_duration=2,
device='gpu' if torch.cuda.is_available() else 'cpu',
eval_interval=0,
precision='amp' if torch.cuda.is_available() else 'fp32',
train_subset_num_batches=16,
profiler=Profiler(
trace_handlers=[JSONTraceHandler(folder=composer_trace_dir, overwrite=True)],
schedule=cyclic_schedule(
wait=0,
warmup=1,
active=4,
repeat=1,
),
torch_prof_folder=torch_trace_dir,
torch_prof_overwrite=True,
torch_prof_memory_filename=None,
),
)
# [trainer-end]
# [fit-start]
# Run training
trainer.fit()
# [fit-end]