-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbookmark_0.html
executable file
·48 lines (48 loc) · 47.5 KB
/
bookmark_0.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<BR><A HREF="https://pytorch.org/docs/stable/dynamo/installation.html" ADD_DATE="1681379495" ICON="">Installing TorchDynamo — PyTorch 2.0 documentation</A>
<BR><A HREF="https://discuss.pytorch.org/t/grad-is-none-when-doing-loss-backward/84661/3" ADD_DATE="1681379495" ICON="">Grad is None when doing loss.backward - autograd - PyTorch Forums</A>
<BR><A HREF="https://neptune.ai/blog/pytorch-loss-functions" ADD_DATE="1681379495" ICON="">PyTorch Loss Functions: The Ultimate Guide - neptune.ai</A>
<BR><A HREF="https://discuss.huggingface.co/t/finetuning-gpt2-with-user-defined-loss/163/13" ADD_DATE="1681379495" ICON="">Finetuning GPT2 with user defined loss - Beginners - Hugging Face Forums</A>
<BR><A HREF="https://huggingface.co/docs/transformers/training" ADD_DATE="1681379495" ICON="">Fine-tune a pretrained model</A>
<BR><A HREF="https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/issues/38" ADD_DATE="1681379495">github.com</A>
<BR><A HREF="https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#:~:text=The%20unreduced%20%28i.e.%20with%20reduction%20set%20to%20%27none%27%29,If%20reduction%20is%20not%20%27none%27%20%28default%20%27mean%27%29%2C%20then%3A" ADD_DATE="1681379495" ICON="">MSELoss — PyTorch 2.0 documentation</A>
<BR><A HREF="https://www.educba.com/pytorch-mseloss/" ADD_DATE="1681379495" ICON="">PyTorch MSELoss() | What is PyTorch MSELoss() | How to use?</A>
<BR><A HREF="https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html" ADD_DATE="1681379495" ICON="">MSELoss — PyTorch 2.0 documentation</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/87870736" ADD_DATE="1681379495" ICON="">python中np.reshape,np.transpose和axis - 知乎</A>
<BR><A HREF="https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html" ADD_DATE="1681379495" ICON="">numpy.rollaxis — NumPy v1.24 Manual</A>
<BR><A HREF="https://blog.csdn.net/SL_World/article/details/114149076" ADD_DATE="1681379495" ICON="">PIL Image与tensor在PyTorch图像预处理时的转换_img should be tensor image. got <class 'pil.image._SL_World的博客-CSDN博客</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/575573336" ADD_DATE="1681379495" ICON="">[NeurIPS 2022] VideoMAE: 简单高效的视频自监督预训练新范式 - 知乎</A>
<BR><A HREF="https://github.com/MCG-NJU/VideoMAE" ADD_DATE="1681379495" ICON="">GitHub - MCG-NJU/VideoMAE: [NeurIPS 2022 Spotlight] VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training</A>
<BR><A HREF="https://pytorch.org/docs/stable/generated/torch.nn.functional.mse_loss.html" ADD_DATE="1681379495" ICON="">torch.nn.functional.mse_loss — PyTorch 2.0 documentation</A>
<BR><A HREF="https://blog.csdn.net/zfhsfdhdfajhsr/article/details/115637954" ADD_DATE="1681379495" ICON="">【Pytorch基础】torch.nn.MSELoss损失函数_一穷二白到年薪百万的博客-CSDN博客</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/445009191" ADD_DATE="1681379495" ICON="">理解Pytorch的loss.backward()和optimizer.step() - 知乎</A>
<BR><A HREF="https://blog.csdn.net/yangwangnndd/article/details/95622893" ADD_DATE="1681379495" ICON="">torch之optimizer.step() 和loss.backward()和scheduler.step()的关系与区别_Nicola-Zhang的博客-CSDN博客</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/435669796" ADD_DATE="1681379495" ICON="">pytorch优化器与学习率设置详解 - 知乎</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/445009191" ADD_DATE="1681379495" ICON="">理解Pytorch的loss.backward()和optimizer.step() - 知乎</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/352276786" ADD_DATE="1681379495" ICON="">pytorch中如何做seq2seq - 知乎</A>
<BR><A HREF="https://blog.csdn.net/qq_38153833/article/details/88060268" ADD_DATE="1681379495" ICON="">cv2和PIL.Image之间的转换_pil image 转为cv2_绑个蝴蝶结的博客-CSDN博客</A>
<BR><A HREF="https://blog.csdn.net/qq_42079689/article/details/102537600" ADD_DATE="1681379495" ICON="">Opencv-python(cv2)改变图像尺寸的cv2.resize()函数_风雪夜归人o的博客-CSDN博客</A>
<BR><A HREF="https://jdhao.github.io/2017/11/06/resize-image-to-square-with-padding/#:~:text=The%20full%20code%20to%20resize%20and%20pad%20an,old_size%5D%29%20%23%20new_size%20should%20be%20in%20%28width%2C%20" ADD_DATE="1681379495" ICON="">How to Resize, Pad Image to Square Shape and Keep Its Aspect Ratio in Python - jdhao's digital space</A>
<BR><A HREF="https://github.com/Meituan-AutoML/CPVT" ADD_DATE="1681379495" ICON="">GitHub - Meituan-AutoML/CPVT</A>
<BR><A HREF="https://github.com/Meituan-AutoML/Twins" ADD_DATE="1681379495" ICON="">GitHub - Meituan-AutoML/Twins: Two simple and effective designs of vision transformer, which is on par with the Swin transformer</A>
<BR><A HREF="https://github.com/Meituan-AutoML/Twins/blob/main/logs/pcpvt_s.txt" ADD_DATE="1681379495" ICON="">Twins/pcpvt_s.txt at main · Meituan-AutoML/Twins · GitHub</A>
<BR><A HREF="https://github.com/BlinkDL/RWKV-LM" ADD_DATE="1681379495" ICON="">GitHub - BlinkDL/RWKV-LM: RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.</A>
<BR><A HREF="https://johanwind.github.io/2023/03/23/rwkv_details.html" ADD_DATE="1681379495" ICON="">How the RWKV language model works | The Good Minima</A>
<BR><A HREF="https://pypi.org/project/rwkvstic/" ADD_DATE="1681379495" ICON="">rwkvstic · PyPI</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/79064602" ADD_DATE="1681379495" ICON="">LSTM细节分析理解(pytorch版) - 知乎</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/404107277" ADD_DATE="1681379495" ICON="">视觉神经网络模型优秀开源工作:timm 库使用方法和代码解读 - 知乎</A>
<BR><A HREF="https://pypi.org/project/timm/" ADD_DATE="1681379495" ICON="">timm · PyPI</A>
<BR><A HREF="https://blog.csdn.net/weixin_44966641/article/details/119299678" ADD_DATE="1681379495" ICON="">Positional Encodings in ViTs 近期各视觉Transformer中的位置编码方法总结及代码解析 1_vit位置编码_Adenialzz的博客-CSDN博客</A>
<BR><A HREF="https://blog.csdn.net/weixin_44966641/article/details/118730730?spm=1001.2014.3001.5501" ADD_DATE="1681379495" ICON="">PyTorch中的torch.nn.Parameter() 详解_Adenialzz的博客-CSDN博客</A>
<BR><A HREF="https://github.com/lucidrains/vit-pytorch" ADD_DATE="1681379495" ICON="">GitHub - lucidrains/vit-pytorch: Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/599150009" ADD_DATE="1681379495" ICON="">RWKV:用RNN达到Transformer性能,且支持并行模式和长程记忆,既快又省显存,已在14B参数规模检验 - 知乎</A>
<BR><A HREF="https://cn.bing.com/search?q=pytorch+view&qs=n&form=QBRE&sp=-1&lq=0&pq=pytorch+view&sc=10-12&sk=&cvid=8B0A649D4BB044DA901D883BDD3D4AD2&ghsh=0&ghacc=0&ghpl=" ADD_DATE="1681379495" ICON="">pytorch view - 搜索</A>
<BR><A HREF="https://blog.csdn.net/york1996/article/details/81949843" ADD_DATE="1681379495" ICON="">PyTorch中view的用法_pytorch view_York1996的博客-CSDN博客</A>
<BR><A HREF="https://blog.csdn.net/weixin_45727931/article/details/114369073" ADD_DATE="1681379495" ICON="">Pytorch循环神经网络(RNN)快速入门与实战_pytorch rnn_Hello3q3q的博客-CSDN博客</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/617864689" ADD_DATE="1681379495" ICON="">多模态大语言模型OpenFlamingo开源了 - 知乎</A>
<BR><A HREF="https://github.com/mlfoundations/open_flamingo#initializing-an-openflamingo-model" ADD_DATE="1681379495" ICON="">GitHub - mlfoundations/open_flamingo: An open-source framework for training large multimodal models.</A>
<BR><A HREF="https://blog.csdn.net/zqx951102/article/details/121707077" ADD_DATE="1681379495" ICON="">VIT中特殊class token的一些问题_zqx951102的博客-CSDN博客</A>
<BR><A HREF="https://zhuanlan.zhihu.com/p/385406085" ADD_DATE="1681379495" ICON="">一文带你掌(放)握(弃)ViT(Vision Transformer)(原理解读+实践代码) - 知乎</A>
<BR><A HREF="https://github.com/pytorch/torchdynamo" ADD_DATE="1681379495" ICON="">GitHub - pytorch/torchdynamo: A Python-level JIT compiler designed to make unmodified PyTorch programs faster.</A>
<BR><A HREF="https://blog.csdn.net/weixin_61445075/article/details/124543483" ADD_DATE="1681379495" ICON="">np.newaxis,tensor.squeeze(),np.hstack,torch.hstack,torch.cat,tensor.reshape的使用_tensor.cat_LUQC638的博客-CSDN博客</A>
<BR><A HREF="https://blog.csdn.net/flyingluohaipeng/article/details/126648783" ADD_DATE="1681379495" ICON="">论文解读 X-CLIP : Expanding Language-Image Pretrained Models for General Video Recognition_cv_lhp的博客-CSDN博客</A>
<BR><A HREF="https://github.com/openai/consistency_models" ADD_DATE="1681379495" ICON="">GitHub - openai/consistency_models: Official repo for consistency models.</A>