forked from 2012ZGZYY/Dual_error_DG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.cc
590 lines (509 loc) · 21.5 KB
/
parameters.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#include "equation.h"
#include "parameters.h"
using namespace dealii;
namespace Parameters
{
void Solver::declare_parameters (ParameterHandler &prm)
{
prm.enter_subsection("linear solver");
{
prm.declare_entry("output", "quiet",
Patterns::Selection("quiet|verbose"),
"State whether output from solver runs should be printed. "
"Choices are <quiet|verbose>.");
prm.declare_entry("method", "rk3",
Patterns::Selection("gmres|direct|umfpack|rk3|mood"),
"The kind of solver for the linear system. "
"Choices are <gmres|direct|umfpack|rk3|mood>.");
prm.declare_entry("residual", "1e-10",
Patterns::Double(),
"Linear solver residual");
prm.declare_entry("max iters", "300",
Patterns::Integer(),
"Maximum solver iterations");
prm.declare_entry("ilut fill", "2",
Patterns::Double(),
"Ilut preconditioner fill");
prm.declare_entry("ilut absolute tolerance", "1e-9",
Patterns::Double(),
"Ilut preconditioner tolerance");
prm.declare_entry("ilut relative tolerance", "1.1",
Patterns::Double(),
"Ilut relative tolerance");
prm.declare_entry("ilut drop tolerance", "1e-10",
Patterns::Double(),
"Ilut drop tolerance");
}
prm.leave_subsection();
}
void Solver::parse_parameters (ParameterHandler &prm)
{
prm.enter_subsection("linear solver");
{
const std::string op = prm.get("output");
if (op == "verbose")
output = verbose;
if (op == "quiet")
output = quiet;
const std::string sv = prm.get("method");
if (sv == "direct")
{
solver = direct;
implicit = true;
}
else if (sv == "gmres")
{
solver = gmres;
implicit = true;
}
else if (sv == "umfpack")
{
solver = umfpack;
implicit = true;
}
else if (sv == "rk3")
{
solver = rk3;
implicit = false;
}
else if (sv == "mood")
{
solver = mood;
implicit = false;
}
linear_residual = prm.get_double("residual");
max_iterations = prm.get_integer("max iters");
ilut_fill = prm.get_double("ilut fill");
ilut_atol = prm.get_double("ilut absolute tolerance");
ilut_rtol = prm.get_double("ilut relative tolerance");
ilut_drop = prm.get_double("ilut drop tolerance");
}
prm.leave_subsection();
}
void Refinement::declare_parameters (ParameterHandler &prm)
{
prm.enter_subsection("refinement");
{
prm.declare_entry("refinement", "false",
Patterns::Bool(),
"Whether to perform mesh refinement or not");
prm.declare_entry("method", "easy",
Patterns::Selection("weighted_residual|residual|kelly|easy"),
"The error estimation strategy for refinement. ");
prm.declare_entry("time step", "1.0e20",
Patterns::Double(),
"Time interval b/w refinement, for unsteady flow only");
prm.declare_entry("iter step", "100000000",
Patterns::Integer(),
"Iteration interval b/w refinement");
prm.declare_entry("refinement fraction", "0.1",
Patterns::Double(),
"Fraction of high refinement");
prm.declare_entry("unrefinement fraction", "0.1",
Patterns::Double(),
"Fraction of low unrefinement");
prm.declare_entry("max elements", "1000000",
Patterns::Double(),
"maximum number of elements");
prm.declare_entry("shock value", "4.0",
Patterns::Double(),
"value for shock indicator");
prm.declare_entry("shock levels", "3.0",
Patterns::Double(),
"number of shock refinement levels");
}
prm.leave_subsection();
}
void Refinement::parse_parameters (ParameterHandler &prm)
{
prm.enter_subsection("refinement");
{
do_refine = prm.get_bool ("refinement");
strategy_name = prm.get("method");
if (strategy_name == "weighted_residual")
{
refinement_indicators = weighted_residual;
}
else if (strategy_name == "residual")
{
refinement_indicators = residual;
}
else if(strategy_name == "kelly")
{
refinement_indicators = kelly;
}
else if(strategy_name == "easy")
{
refinement_indicators = easy;
}
refine_fraction = prm.get_double("refinement fraction");
coarsen_fraction = prm.get_double("unrefinement fraction");
shock_val = prm.get_double("shock value");
shock_levels = prm.get_double("shock levels");
refine_time_step = prm.get_double("time step");
refine_iter_step = prm.get_integer("iter step");
max_n_cells = prm.get_integer("max elements");
}
prm.leave_subsection();
}
void Flux::declare_parameters (ParameterHandler &prm)
{
prm.enter_subsection("flux");
{
prm.declare_entry("flux", "lxf",
Patterns::Selection("lxf|sw|kfvs|roe|hllc"),
"Numerical flux: lxf | sw | kfvs | roe | hllc");
prm.declare_entry("stab", "mesh",
Patterns::Selection("constant|mesh"),
"Whether to use a constant stabilization parameter or "
"a mesh-dependent one");
prm.declare_entry("stab value", "1",
Patterns::Double(),
"alpha stabilization");
}
prm.leave_subsection();
}
void Flux::parse_parameters (ParameterHandler &prm)
{
prm.enter_subsection("flux");
{
const std::string flux = prm.get("flux");
if(flux == "lxf")
flux_type = lxf;
else if(flux == "sw")
flux_type = sw;
else if(flux == "kfvs")
flux_type = kfvs;
else if(flux == "roe")
flux_type = roe;
else if(flux == "hllc")
flux_type = hllc;
else
AssertThrow (false, ExcNotImplemented());
const std::string stab = prm.get("stab");
if (stab == "constant")
stabilization_kind = constant;
else if (stab == "mesh")
stabilization_kind = mesh_dependent;
else
AssertThrow (false, ExcNotImplemented());
stabilization_value = prm.get_double("stab value");
}
prm.leave_subsection();
}
void Limiter::declare_parameters (ParameterHandler &prm)
{
prm.enter_subsection("limiter");
{
prm.declare_entry("shock indicator", "limiter",
Patterns::Selection("limiter|density|energy|u2"),
"Shock indicator type: limiter | density | energy | u2");
prm.declare_entry("type", "none",
Patterns::Selection("none|TVB"),
"Limiter type: none | TVB");
prm.declare_entry("characteristic limiter", "false",
Patterns::Bool(),
"whether to use characteristic limiter");
prm.declare_entry("positivity limiter", "false",
Patterns::Bool(),
"whether to use positivity limiter");
prm.declare_entry("M", "0",
Patterns::Double(0),
"TVB parameter");
prm.declare_entry("beta", "1.0",
Patterns::Double(1.0,2.0),
"limiter parameter");
prm.declare_entry("conserve angular momentum", "false",
Patterns::Bool(),
"conserve angular momentum during limiting");
}
prm.leave_subsection();
}
void Limiter::parse_parameters (ParameterHandler &prm)
{
prm.enter_subsection("limiter");
{
const std::string ind = prm.get("shock indicator");
if(ind == "limiter")
shock_indicator_type = limiter;
else if(ind == "density")
shock_indicator_type = density;
else if(ind == "energy")
shock_indicator_type = energy;
else if(ind == "u2")
shock_indicator_type = u2;
else
AssertThrow (false, ExcNotImplemented());
const std::string type = prm.get("type");
if(type == "none")
limiter_type = none;
else if(type == "TVB")
limiter_type = TVB;
else
AssertThrow (false, ExcNotImplemented());
char_lim = prm.get_bool("characteristic limiter");
pos_lim = prm.get_bool("positivity limiter");
M = prm.get_double("M");
beta = prm.get_double("beta");
conserve_angular_momentum = prm.get_bool("conserve angular momentum");
}
prm.leave_subsection();
}
void Output::declare_parameters (ParameterHandler &prm)
{
prm.enter_subsection("output");
{
prm.declare_entry("schlieren plot", "false",
Patterns::Bool (),
"Whether or not to produce schlieren plots");
prm.declare_entry("time step", "1e20",
Patterns::Double(),
"Output once per this time period");
prm.declare_entry("iter step", "1000000",
Patterns::Integer(),
"Output once per this iteration period");
prm.declare_entry("format", "vtk",
Patterns::Selection("vtk|tecplot"),
"Output format for visualization: vtk, tecplot");
prm.declare_entry("compute angular momentum", "10000000",
Patterns::Integer(),
"Compute angular momentum once per this iteration period");
}
prm.leave_subsection();
}
void Output::parse_parameters (ParameterHandler &prm)
{
prm.enter_subsection("output");
{
schlieren_plot = prm.get_bool("schlieren plot");
output_time_step = prm.get_double("time step");
output_iter_step = prm.get_double("iter step");
output_format = prm.get("format");
ang_mom_step = prm.get_double("compute angular momentum");
}
prm.leave_subsection();
}
template <int dim>
AllParameters<dim>::BoundaryConditions::BoundaryConditions ()
:
values (EulerEquations<dim>::n_components)
{}
template <int dim>
AllParameters<dim>::AllParameters ()
:
initial_conditions (EulerEquations<dim>::n_components)
{}
template <int dim>
void
AllParameters<dim>::declare_parameters (ParameterHandler &prm)
{
prm.declare_entry("mesh type", "gmsh",
Patterns::Selection("ucd|gmsh"),
"Mesh file type");
prm.declare_entry("mesh file", "grid.msh",
Patterns::Anything(),
"Mesh file name");
prm.declare_entry("degree", "1",
Patterns::Integer(),
"degree of DG space");
prm.declare_entry("basis", "Qk",
Patterns::Selection("Qk|Pk"),
"Qk or Pk basis");
prm.declare_entry("mapping", "q1",
Patterns::Selection("q1|q2|cartesian"),
"mapping type to reference element");
prm.declare_entry("diffusion power", "2.0",
Patterns::Double(),
"power of mesh size in shock capturing term");
prm.declare_entry("diffusion coefficient", "0.0",
Patterns::Double(),
"coefficient of shock capturing term");
prm.declare_entry("gravity", "0.0",
Patterns::Double(0.0),
"gravitational force");
prm.declare_entry("read init", "false",
Patterns::Bool(),
"read from initial file");
prm.declare_entry("init file", "flow_field_solution.dat",
Patterns::Anything(),
"init file name");
prm.enter_subsection("time stepping");
{
prm.declare_entry("stationary", "false",
Patterns::Bool(),
"stationary computation");
prm.declare_entry("cfl", "0.0",
Patterns::Double(0),
"cfl number");
prm.declare_entry("time step type", "global",
Patterns::Selection("global|local"),
"global or local time step");
prm.declare_entry("time step", "-1.0",
Patterns::Double(-1),
"simulation time step");
prm.declare_entry("final time", "1.0e20",
Patterns::Double(0),
"simulation end time");
prm.declare_entry("theta scheme value", "1.0",
Patterns::Double(0,1),
"value for theta that interpolated between explicit "
"Euler (theta=0), Crank-Nicolson (theta=0.5), and "
"implicit Euler (theta=1).");
prm.declare_entry("nonlinear iterations", "1",
Patterns::Integer(),
"maximum non-linear iterations");
}
prm.leave_subsection();
for (unsigned int b=0; b<max_n_boundaries; ++b)
{
prm.enter_subsection("boundary_" +
Utilities::int_to_string(b));
{
prm.declare_entry("type", "outflow",
Patterns::Selection("slip|inflow|outflow|pressure|farfield"),
"<slip|inflow|outflow|pressure|farfield>");
for (unsigned int di=0; di<EulerEquations<dim>::n_components; ++di)
{
prm.declare_entry("w_" + Utilities::int_to_string(di) +
" value", "0.0",
Patterns::Anything(),
"expression in x,y,z");
}
}
prm.leave_subsection();
}
prm.enter_subsection("initial condition");
{
prm.declare_entry("function", "none",
Patterns::Selection("none|rt|isenvort|vortsys"),
"function for initial condition");
for (unsigned int di=0; di<EulerEquations<dim>::n_components; ++di)
prm.declare_entry("w_" + Utilities::int_to_string(di) + " value",
"0.0",
Patterns::Anything(),
"expression in x,y,z");
}
prm.leave_subsection();
Parameters::Solver::declare_parameters (prm);
Parameters::Refinement::declare_parameters (prm);
Parameters::Flux::declare_parameters (prm);
Parameters::Limiter::declare_parameters (prm);
Parameters::Output::declare_parameters (prm);
}
template <int dim>
void
AllParameters<dim>::parse_parameters (ParameterHandler &prm)
{
mesh_type = prm.get("mesh type");
mesh_filename = prm.get("mesh file"); //the default value is grid.msh
diffusion_power = prm.get_double("diffusion power");
diffusion_coef = prm.get_double("diffusion coefficient");
degree = prm.get_integer("degree");
gravity = prm.get_double("gravity");
read_init = prm.get_bool("read init");
init_filename =prm.get("init file"); //the default value is "flow_field_solution.dat"
std::string map = prm.get("mapping");
if(map == "q1")
mapping_type = q1;
else if(map == "q2")
mapping_type = q2;
else if(map == "cartesian")
mapping_type = cartesian;
else
AssertThrow (false, ExcNotImplemented());
std::string basis_type = prm.get("basis");
if(basis_type=="Qk")
basis = Qk;
else
basis = Pk;
prm.enter_subsection("time stepping");
{
cfl = prm.get_double("cfl");
time_step_type = prm.get("time step type");
time_step = prm.get_double("time step");
final_time = prm.get_double("final time");
is_stationary = prm.get_bool("stationary");
if (is_stationary)
{
time_step = 1.0;
final_time = 1.0e20;
}
else
AssertThrow(cfl > 0 || time_step > 0, ExcMessage("cfl and time_step zero"));
theta = prm.get_double("theta scheme value");
max_nonlin_iter = prm.get_integer("nonlinear iterations");
}
prm.leave_subsection();
std::string variables = "x,y,t";
if(dim==3) variables = "x,y,z,t";
for (unsigned int boundary_id=0; boundary_id<max_n_boundaries;
++boundary_id) //for a specific boundary_id, manually set its type and expressions.
{
prm.enter_subsection("boundary_" +
Utilities::int_to_string(boundary_id));
{
std::vector<std::string> expressions(EulerEquations<dim>::n_components, "0.0");
std::string boundary_type = prm.get("type");
if (boundary_type == "slip")
boundary_conditions[boundary_id].kind
= EulerEquations<dim>::no_penetration_boundary;
else if (boundary_type == "inflow")
boundary_conditions[boundary_id].kind
= EulerEquations<dim>::inflow_boundary;
else if (boundary_type == "pressure")
boundary_conditions[boundary_id].kind
= EulerEquations<dim>::pressure_boundary;
else if (boundary_type == "outflow")
boundary_conditions[boundary_id].kind
= EulerEquations<dim>::outflow_boundary;
else if (boundary_type == "farfield")
boundary_conditions[boundary_id].kind
= EulerEquations<dim>::farfield_boundary;
else
AssertThrow (false, ExcNotImplemented());
for (unsigned int c=0; c<EulerEquations<dim>::n_components; ++c)
{
expressions[c] = prm.get("w_" + Utilities::int_to_string(c) +
" value");
}
boundary_conditions[boundary_id].values.initialize
(variables, //std::string variables = "x,y,t"
expressions, //std::vector<std::string> expressions(n_components, "0.0")
std::map<std::string, double>(),
true);
}
prm.leave_subsection();
}
prm.enter_subsection("initial condition");
{
ic_function = prm.get("function");
std::vector<std::string> expressions (EulerEquations<dim>::n_components,
"0.0");
for (unsigned int di = 0; di < EulerEquations<dim>::n_components; di++)
expressions[di] = prm.get("w_" + Utilities::int_to_string(di) +
" value");
initial_conditions.initialize(FunctionParser<dim>::default_variable_names(),
expressions,
std::map<std::string, double>());
}
prm.leave_subsection();
Parameters::Solver::parse_parameters (prm);
Parameters::Refinement::parse_parameters (prm);
Parameters::Flux::parse_parameters (prm);
Parameters::Limiter::parse_parameters (prm);
Parameters::Output::parse_parameters (prm);
// Do some checking of parameters
if(solver == mood)
AssertThrow(time_step_type == "global", ExcMessage("MOOD requires global time step"));
if(solver == mood)
AssertThrow(basis == Pk, ExcMessage("MOOD is implemented only for Pk"));
if(limiter_type == TVB)
AssertThrow(mapping_type == cartesian, ExcMessage("TVB limiter works on cartesian grids only"));
if(basis == Pk)
AssertThrow(mapping_type == cartesian, ExcMessage("Pk basis can only be used with Cartesian grids"));
if(basis == Pk)
AssertThrow(do_refine == false, ExcMessage("Refinement does not work for Pk basis"));
}
}
// To avoid linking errors
template struct Parameters::AllParameters<2>;