forked from xmweijh/CommunityDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCORPA.py
152 lines (137 loc) · 5.6 KB
/
CORPA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import collections
import random
import time
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
class COPRA:
def __init__(self, G, T, v):
"""
:param G:图本身
:param T: 迭代次数T
:param r:满足社区次数要求的阈值r
"""
self._G = G
self._n = len(G.nodes(False)) # 节点数目
self._T = T
self._v = v
def execute(self):
# 建立成员标签记录
# 节点将被分配隶属度大于阈值的社区标签
lablelist = {i: {i: 1} for i in self._G.nodes()}
for t in range(self._T):
visitlist = list(self._G.nodes())
# 随机排列遍历顺序
np.random.shuffle(visitlist)
# 开始遍历节点
for visit in visitlist:
temp_count = 0
temp_label = {}
total = len(self._G[visit])
# 根据邻居利用公式计算标签
for i in self._G.neighbors(visit):
res = {key: value / total for key, value in lablelist[i].items()}
temp_label = dict(Counter(res) + Counter(temp_label))
temp_count = len(temp_label)
temp_label2 = temp_label.copy()
for key, value in list(temp_label.items()):
if value < 1 / self._v:
del temp_label[key]
temp_count -= 1
# 如果一个节点中所有的标签都低于阈值就随机选择一个
if temp_count == 0:
# temp_label = {}
# v = self._v
# if self._v > len(temp_label2):
# v = len(temp_label2)
# b = random.sample(temp_label2.keys(), v)
# tsum = 0.0
# for i in b:
# tsum += temp_label2[i]
# temp_label = {i: temp_label2[i]/tsum for i in b}
b = random.sample(temp_label2.keys(), 1)
temp_label = {b[0]: 1}
# 否则标签个数一定小于等于v个 进行归一化即可
else:
tsum = sum(temp_label.values())
temp_label = {key: value / tsum for key, value in temp_label.items()}
lablelist[visit] = temp_label
communities = collections.defaultdict(lambda: list())
# 扫描lablelist中的记录标签,相同标签的节点加入同一个社区中
for primary, change in lablelist.items():
for label in change.keys():
communities[label].append(primary)
# 返回值是个数据字典,value以集合的形式存在
return communities.values()
def cal_EQ(cover, G):
m = len(G.edges(None, False)) # 如果为真,则返回3元组(u、v、ddict)中的边缘属性dict。如果为false,则返回2元组(u,v)
# 存储每个节点所在的社区
vertex_community = collections.defaultdict(lambda: set())
# i为社区编号(第几个社区) c为该社区中拥有的节点
for i, c in enumerate(cover):
# v为社区中的某一个节点
for v in c:
# 根据节点v统计他所在的社区i有哪些
vertex_community[v].add(i)
total = 0.0
for c in cover:
for i in c:
# o_i表示i节点所同时属于的社区数目
o_i = len(vertex_community[i])
# k_i表示i节点的度数(所关联的边数)
k_i = len(G[i])
for j in c:
t = 0.0
# o_j表示j节点所同时属于的社区数目
o_j = len(vertex_community[j])
# k_j表示j节点的度数(所关联的边数)
k_j = len(G[j])
if G.has_edge(i, j):
t += 1.0 / (o_i * o_j)
t -= k_i * k_j / (2 * m * o_i * o_j)
total += t
return round(total / (2 * m), 4)
def cal_Q(partition, G): # 计算Q
m = len(G.edges(None, False)) # 如果为真,则返回3元组(u、v、ddict)中的边缘属性dict。如果为false,则返回2元组(u,v)
# print(G.edges(None,False))
# print("=======6666666")
a = []
e = []
for community in partition: # 把每一个联通子图拿出来
t = 0.0
for node in community: # 找出联通子图的每一个顶点
t += len([x for x in G.neighbors(node)]) # G.neighbors(node)找node节点的邻接节点
a.append(t / (2 * m))
# self.zidian[t/(2*m)]=community
for community in partition:
t = 0.0
for i in range(len(community)):
for j in range(len(community)):
if (G.has_edge(community[i], community[j])):
t += 1.0
e.append(t / (2 * m))
q = 0.0
for ei, ai in zip(e, a):
q += (ei - ai ** 2)
return q
def load_graph(path):
G = nx.Graph()
with open(path, 'r') as text:
for line in text:
vertices = line.strip().split(' ')
source = int(vertices[0])
target = int(vertices[1])
G.add_edge(source, target)
return G
if __name__ == '__main__':
# G = nx.karate_club_graph()
G = load_graph('data/dolphin.txt')
start_time = time.time()
algorithm = COPRA(G, 20, 3)
communities = algorithm.execute()
end_time = time.time()
for i, community in enumerate(communities):
print(i, community)
print(cal_EQ(communities, G))
print(f'算法执行时间{end_time - start_time}')