-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataSetLoaderLib.py
61 lines (58 loc) · 2.34 KB
/
DataSetLoaderLib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from GlobalUtils import *
import scipy
import os
from MachineSpecificSettings import Settings
from sklearn.externals import joblib
import pickle;
#TODO: use this if needed os.getcwd()+"/"+
class DataSetLoader(object):
@timing
def LoadDataSet(self, dataSetType):
s = Settings();
if dataSetType == "A_train":
variables=numpy.array(joblib.load('datasetA_raw/DatasetA_Train_mean.joblib.pkl'))
return variables;
elif dataSetType == "A_test":
variables=numpy.array(joblib.load('datasetA_raw/DatasetA_Validation_mean.joblib.pkl'))
return variables;
elif dataSetType == "B_train":
variables=numpy.array(joblib.load('datasetB_raw/DatasetB_Train.joblib.pkl'))
return variables;
elif dataSetType == "B_test":
variables=numpy.array(joblib.load('datasetB_raw/DatasetB_Validation.joblib.pkl'))
return variables;
elif dataSetType == "C_train":
variables=numpy.array(joblib.load('datasetC_raw/DatasetC_Train.joblib.pkl'))
return variables;
elif dataSetType == "C_test":
variables=numpy.array(joblib.load('datasetC_raw/DatasetC_Validation.joblib.pkl'))
return variables;
else:
print "INVALID INPUT"
logWarning("HARD CODED VALUE from DataSetLoaderLib.LoadDataSet()");
return [[2.5, 3.5, 3.0, 3.5, 2.5, 3.0],[2.5, 3.5, 3.0, 3.5, 2.5, 3.0]];
@timing
def LoadDataSetClasses(self, dataSetType):
s = Settings();
if dataSetType == "A_train":
variables=numpy.array(joblib.load('datasetA_raw/DatasetA_TrainClasses.joblib.pkl'))
return variables;
elif dataSetType == "A_test":
variables=numpy.array(joblib.load('datasetA_raw/DatasetA_ValidationClasses.joblib.pkl'))
return variables;
elif dataSetType == "B_train":
variables=numpy.array(joblib.load('datasetB_raw/DatasetB_TrainClasses.joblib.pkl'))
return variables;
elif dataSetType == "B_test":
variables=numpy.array(joblib.load('datasetB_raw/DatasetB_ValidationClasses.joblib.pkl'))
return variables;
elif dataSetType == "C_train":
variables=numpy.array(joblib.load('datasetC_raw/DatasetC_TrainClasses.joblib.pkl'))
return variables;
elif dataSetType == "C_test":
variables=numpy.array(joblib.load('datasetC_raw/DatasetC_ValidationClasses.joblib.pkl'))
return variables;
else:
print "INVALID INPUT"
logWarning("HARD CODED VALUE from DataSetLoaderLib.LoadDataSetClasses()");
return [0, 1, 1, 1, 0, 1];