-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTema6AQ.tex
1185 lines (1106 loc) · 67.8 KB
/
Tema6AQ.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[GTS.tex]{subfiles}
%\usepackage{amsmath,amssymb}
%\usepackage[utf8]{inputenc}
%\usepackage[spanish]{babel}
%\usepackage[]{graphicx,wrapfig}
%\usepackage{enumerate}
%\usepackage{amsthm}
%\usepackage{tikz-cd}
%\usetikzlibrary{babel}
%\usepackage{pgf,tikz}
%\usepackage{mathrsfs}
%\usetikzlibrary{arrows}
%\usetikzlibrary{cd}
%\usepackage[spanish]{babel}
%\usepackage{fancyhdr}
%\usepackage{titlesec}
%\usepackage{floatrow}
%\usepackage{makeidx}
%\usepackage[tocflat]{tocstyle}
%\usetocstyle{standard}
%%\usepackage{breqn}
%\usepackage{bm}
%%\usepackage[sc]{mathpazo}
%%\usepackage{blindtext}
%\usepackage{color} %May be necessary if you want to color links
%\usepackage{hyperref}
%\hypersetup{colorlinks=true,citecolor=red, linkcolor=blue}
%
%
%\renewcommand{\baselinestretch}{1,4}
%\setlength{\oddsidemargin}{0.25in}
%\setlength{\evensidemargin}{0.25in}
%\setlength{\textwidth}{6in}
%\setlength{\topmargin}{0.1in}
%\setlength{\headheight}{0.1in}
%\setlength{\headsep}{0.1in}
%\setlength{\textheight}{8in}
%\setlength{\footskip}{0.75in}
%
%\newtheorem{teorema}{Teorema}[section]
%\newtheorem{defi}[teorema]{Definición}
%\newtheorem{coro}[teorema]{Corolario}
%\newtheorem{lemma}[teorema]{Lema}
%\newtheorem{ej}[teorema]{Ejemplo}
%\newtheorem{ejs}[teorema]{Ejemplos}
%\newtheorem{observacion}[teorema]{Observación}
%\newtheorem{observaciones}[teorema]{Observaciones}
%\newtheorem{prop}[teorema]{Proposición}
%\newtheorem{propi}[teorema]{Propiedades}
%\newtheorem{nota}[teorema]{Nota}
%\newtheorem{notas}[teorema]{Notas}
%\newtheorem*{dem}{Demostración}
%\newtheorem{ejer}[teorema]{Ejercicio}
%\newtheorem{consec}[teorema]{Consecuencia}
%\newtheorem{consecs}[teorema]{Consecuencias}
%
%\providecommand{\abs}[1]{\lvert#1\rvert}
%\providecommand{\norm}[1]{\lVert#1\rVert}
%\providecommand{\ninf}[1]{\norm{#1}_\infty}
%\providecommand{\numn}[1]{\norm{#1}_1}
%\providecommand{\gabs}[1]{\left|{#1}\right|}
%\newcommand{\bor}[1]{\mathcal{B}(#1)}
%\newcommand{\R}{\mathbb{R}}
%\newcommand{\Z}{\mathbb{Z}}
%\newcommand{\N}{\mathbb{N}}
%\newcommand{\Q}{\mathbb{Q}}
%\newcommand{\C}{\mathbb{C}}
%\newcommand{\Pro}{\mathbb{P}}
%\newcommand{\Tau}{\mathcal{T}}
%\newcommand{\verteq}{\rotatebox{90}{$\,=$}}
%\newcommand{\vertequiv}{\rotatebox{110}{$\,\equiv$}}
%\providecommand{\lrg}{\longrightarrow}
%\providecommand{\func}[2]{\colon{#1}\longrightarrow{#2}}
%\newcommand*{\QED}{\hfill\ensuremath{\blacksquare}}
%\newcommand*\circled[1]{\tikz[baseline=(char.base)]{
% \node[shape=circle,draw,inner sep=1.5pt] (char) {#1};}}
%\newcommand*{\longhookarrow}{\ensuremath{\lhook\joinrel\relbar\joinrel\rightarrow}}
%
%\newenvironment{solucion}{\begin{trivlist}
%\item[\hskip \labelsep {\textit{Solución}.}\hskip \labelsep]}{\end{trivlist}}
%
%
%\def\quot#1#2{%
% \raise1ex\hbox{$#1$}\Big/\lower1ex\hbox{$#2$}%
%}
%
%\makeatletter
%\renewcommand\tableofcontents{%
% \null\hfill\textbf{\Large\contentsname}\hfill\null\par
% \@mkboth{\MakeUppercase\contentsname}{\MakeUppercase\contentsname}%
% \@starttoc{toc}%
%}
%
%\pagestyle{fancy}
%\fancyhf{}
%\rhead{Topología de Superficies (Grado en Matemáticas)}
%\lhead{Curso 2016/2017}
%\cfoot{\thepage}
\begin{document}
\renewcommand\chaptername{\Huge Tema}
\titleformat{\chapter}[display]
{\normalfont\huge\bfseries}{\chaptertitlename\ \thechapter}{10pt}{\Huge}
\titlespacing*{\chapter}{0pt}{-1cm}{10pt}
%\tableofcontents
\setcounter{chapter}{5}
\chapter{Clasificación de Superficies.\\ Conclusión}
\section{El grupo fundamental de una superficie de tipo I}
Sea $S$ una superficie de tipo I. Recordemos que estas superficies vienen representadas por un modelo que tiene el código $a^{}_1b^{}_1a^{-1}_1b^{-1}_1\dots a^{}_nb^{}_na^{-1}_nb^{-1}_n$. Esto es, $S$ está representada por la identificación de los lados de un polígono regular de $4n$ lados de acuerdo con el siguiente gráfico:
\definecolor{zzttqq}{rgb}{0.6,0.2,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1.5,-0.85) rectangle (8,3.4);
\draw (4.,3.)-- (5.5,3.);
\draw (5.5,3.)-- (6.5,2.);
\draw (6.5,2.)-- (6.5,0.5);
\draw (6.5,0.5)-- (5.5,-0.5);
\draw (4.,3.)-- (3.,2.);
\draw (3.,2.)-- (3.,0.5);
\draw [dash pattern=on 2pt off 2pt] (3.,0.5)-- (5.5,-0.5);
\draw(4.8,1.4) circle (0.6027172390626455cm);
\draw (4.405738478652503,1.8558792856097492)-- (4.,3.);
\draw [->] (4.,3.) -- (4.8,3.);
\draw [->] (5.5,3.) -- (6.,2.5);
\draw [->] (6.5,0.5) -- (6.5,1.1957501053417074);
\draw [->] (5.5,-0.5) -- (6.,0.);
\draw [->] (4.,3.) -- (3.5,2.5);
\draw [->] (3.,2.) -- (3.,1.2);
\draw [dash pattern=on 2pt off 2pt] (4.8,1.4) circle (1cm);
\draw (4.55,1.5838433463488795) node[anchor=north west] {$A$};
\draw (3.414187200315089,0.8683484392203448) node[anchor=north west] {$B$};
\draw (1,1.7) node[anchor=north west] {\large{$S\ \equiv$}};
\draw (2.35,1.5) node[anchor=north west] {$a_n$};
\draw (3.,3) node[anchor=north west] {$b_n$};
\draw (4.7,3.35) node[anchor=north west] {$a_1$};
\draw (6.048151968315743,2.8025434628864936) node[anchor=north west] {$b_1$};
\draw (6.622120410297976,1.387278811423458) node[anchor=north west] {$a_1$};
\draw (6.142502945079946,-0.04371100283361169) node[anchor=north west] {$b_1$};
\draw (4.2,2.78681830009246) node[anchor=north west] {$\gamma$};
\draw (5.25,1.552393020760812) node[anchor=north west] {$S^1$};
\draw (4.4284602005302665,1.8904840208325373) node[anchor=north west] {$x_0$};
\begin{scriptsize}
\draw [fill=black] (4.405738478652503,1.8558792856097492) circle (2.5pt);
\fill[color=zzttqq,fill=zzttqq,fill opacity=0.1](3,0.5)--(3.,2.) -- (4,3)--(5.5,3)--(6.5,2)-- (6.5,0.5)--(5.5,-0.5)--cycle;
\end{scriptsize}
\end{tikzpicture}
Procedemos de manera similar a los ejemplo del capítulo anterior: descomponemos $S$ como la unión $S=A\cup B$ donde $A$ es un disco abierto, por lo que es contráctil, esto es, $\pi_1(A,x_0)=\{1\}$, y $B$ es $S$ menos un disco cerrado contenido en $A$. En particular, $B$ se retrae al siguiente grafo:
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-3,0.5) rectangle (6.393300959292774,3.2);
\draw [rotate around={-12.485467490857165:(1.6364672736480006,2.086385207554635)}] (1.6364672736480006,2.086385207554635) ellipse (0.4955243419426075cm and 0.13041747704333986cm);
\draw [rotate around={86.157546872085:(2.173228013337387,2.4831214064554827)}] (2.173228013337387,2.4831214064554827) ellipse (0.46750069112046705cm and 0.1344452240202966cm);
\draw [shift={(2.2965829659368096,2.189736654327123)},dash pattern=on 2pt off 2pt] plot[domain=-0.020405330686538825:1.4601391056210007,variable=\t]({1.*0.6535839211181232*cos(\t r)+0.*0.6535839211181232*sin(\t r)},{0.*0.6535839211181232*cos(\t r)+1.*0.6535839211181232*sin(\t r)});
\draw [rotate around={1.1708850280784644:(2.58494704784979,1.9915168803910728)}] (2.58494704784979,1.9915168803910728) ellipse (0.4223626584291288cm and 0.07777723849776252cm);
\draw [rotate around={-64.02560603756869:(2.3199203894015676,1.5529583855030706)}] (2.3199203894015676,1.5529583855030706) ellipse (0.4572702113179464cm and 0.14432623016288876cm);
\draw (2.1432227545969864,1.9963694313334333)-- (1.,1.);
\draw (1.2,2.6) node[anchor=north west] {$a_1$};
\draw (1.6,2.9298663699236602) node[anchor=north west] {$b_1$};
\draw (2.812673416271692,1.9430267491282782) node[anchor=north west] {$a_n$};
\draw (2.6259740285536464,1.4829461151088095) node[anchor=north west] {$b_n$};
\draw (1.0723684093284844,0.996194139986763) node[anchor=north west] {$x_0$};
\draw (1.645802243033909,1.4162677623523647) node[anchor=north west] {$\gamma$};
\draw (-0.3,2.2) node[anchor=north west] {\large{$L\equiv$}};
\draw [->] (1.35,2.2308648946743626) -- (1.45,2.2512894804092745);
\draw [->] (2.099185545523773,2.8155770684977686) -- (2.0664202368358655,2.6958193007182714);
\draw [->] (2.8,1.92) -- (2.7,1.925);
\draw [->] (2.539517043578322,1.3753231851333148) -- (2.5,1.5);
\begin{scriptsize}
\draw [fill=black] (2.1432227545969864,1.9963694313334333) circle (2.0pt);
\draw [fill=black] (1.,1.) circle (2.5pt);
\end{scriptsize}
\end{tikzpicture}
Por otro lado, $A\cap B$ se retrae con deformación fuerte a la circunferencia $S^1$. Sea $\varepsilon$ la clase de la vuelta canónica de $S^1$. Sea $k_*\func{\pi_1(L,x_0)}{\pi_1(B,x_0)}$ el isomorfismo inducido por la inclusión $k\func{L}{B}$. Sabemos que $\pi_1(L,x_0)$ es el grupo libre engendrado por las clases de los lazos $\gamma*a_i*\overline{\gamma}$ y $\gamma*b_i*\overline{\gamma}$, donde $a_i$ y $b_i$ son las vueltas canónicas indicadas de la misma manera. Por tanto las clases, que denotamos $\alpha'_i$ y $\beta'_i$ respectivamente, de esos mismos lazos en $B$ generan $\pi_1(B,x_0)$. Tenemos el siguiente diagrama
\[
\begin{tikzcd}
\pi_1(A\cap B,x_0)=\langle\varepsilon|\ \rangle \ar[r, "i_{1*}"]\arrow[d,"i_{2*}"'] & \pi_1(A,x_0)=\{1\}\arrow[d, dashed, "j_{1*}"]\\
\pi_1(B,x_0)=\langle \alpha'_1,\beta'_1,\dots,\alpha'_n,\beta'_n| \rangle\arrow[r,dashed,"j_{2*}"'] & \pi_1(S,x_0)
\end{tikzcd}
\]
Como se ha hecho repetidas veces ya, en este diagrama se comprueba que $i_{2*}(\varepsilon)=[\alpha'_1,\beta'_1]\cdots[\alpha'_n,\beta'_n]$, donde $[\alpha'_i,\beta'_i]$ indica la relación de conmutación. Además, como $i_{1*}(\varepsilon)=1$, usando el teorema de Seifert-Van Kampen, se llega a
\[
\pi_1(S,x)=\langle \alpha_1,\beta_1,\dots,\alpha_n,\beta_n|[\alpha_1,\beta_1]\cdots[\alpha_n,\beta_n]\rangle,
\]
donde $\alpha_i=j_{2*}(\alpha'_i)$ y $\beta_i=j_{2*}(\beta'_i)$ son las clases de los lazos $\gamma*a_i*\overline{\gamma}$ y $\gamma*b_i*\overline{\gamma}$ en $X$. Ahora, al abelianizar la relación del grupo, que es un producto de conmutadores, sevuelve trivial y nos queda el grupo abeliano libre
\begin{gather*}
(\pi_1(S,x))^{ab}=\langle \alpha_i, \beta_i|[\alpha_i,\beta_i],[\alpha_i,\beta_j],\ 1\leq i, j\leq n\rangle=\\
\langle \alpha_i, \beta_i|[\alpha_i,\beta_j],[\alpha_i,\alpha_j], [\beta_i,\beta_j],\ 1\leq i, j\leq n\rangle\cong\Z\underbrace{\times\cdots\times}_{2n\ veces}\Z.
\end{gather*}
\section{El grupo fundamental de una superficie de tipo II}
Una superficie $S$ de tipo II viene representada por el código $a_1 a_1 a_2 a_2\dots a_n a_n$. Esto es, $S$ es el resultado de identificar los lados de un polígono de $2n$ lados de acuerdo con el siguiente gráfico:
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1.5,-0.85) rectangle (8,3.4);
\draw (4.,3.)-- (5.5,3.);
\draw (5.5,3.)-- (6.5,2.);
\draw (6.5,2.)-- (6.5,0.5);
\draw (6.5,0.5)-- (5.5,-0.5);
\draw (4.,3.)-- (3.,2.);
\draw (3.,2.)-- (3.,0.5);
\draw [dash pattern=on 2pt off 2pt] (3.,0.5)-- (5.5,-0.5);
\draw(4.8,1.4) circle (0.6027172390626455cm);
\draw (4.405738478652503,1.8558792856097492)-- (4.,3.);
\draw [->] (4.,3.) -- (4.8,3.);
\draw [->] (5.5,3.) -- (6.,2.5);
\draw [->] (6.5,1.5) -- (6.5,1.);
\draw [->] (6.5,0.5) -- (6.,0.);
\draw [->] (3.,2) -- (3.5,2.5);
\draw [->] (3.,1.) -- (3.,1.5);
\draw [dash pattern=on 2pt off 2pt] (4.8,1.4) circle (1cm);
\draw (4.55,1.5838433463488795) node[anchor=north west] {$A$};
\draw (3.414187200315089,0.8683484392203448) node[anchor=north west] {$B$};
\draw (1,1.7) node[anchor=north west] {\large{$S\ \equiv$}};
\draw (2.35,1.5) node[anchor=north west] {$a_n$};
\draw (3.,3) node[anchor=north west] {$a_n$};
\draw (4.7,3.35) node[anchor=north west] {$a_1$};
\draw (6.048151968315743,2.8025434628864936) node[anchor=north west] {$a_1$};
\draw (6.622120410297976,1.387278811423458) node[anchor=north west] {$a_2$};
\draw (6.142502945079946,-0.04371100283361169) node[anchor=north west] {$a_2$};
\draw (4.2,2.78681830009246) node[anchor=north west] {$\gamma$};
\draw (5.25,1.552393020760812) node[anchor=north west] {$S^1$};
\draw (4.4284602005302665,1.8904840208325373) node[anchor=north west] {$x_0$};
\begin{scriptsize}
\draw [fill=black] (4.405738478652503,1.8558792856097492) circle (2.5pt);
\fill[color=zzttqq,fill=zzttqq,fill opacity=0.1](3,0.5)--(3.,2.) -- (4,3)--(5.5,3)--(6.5,2)-- (6.5,0.5)--(5.5,-0.5)--cycle;
\end{scriptsize}
\end{tikzpicture}
Como en el caso anterior, escribimos $S=A\cup B$, donde $A$ es un disco abierto, por lo que es contráctil, esto es, $\pi_1(A,x_0)=\{1\}$, y $B$ es $S$ menos un disco cerrado contenido en $A$, por lo que $B$ se retrae al siguiente grafo:
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-3,0.5) rectangle (6.393300959292774,3.2);
\draw [rotate around={-12.485467490857165:(1.6364672736480006,2.086385207554635)}] (1.6364672736480006,2.086385207554635) ellipse (0.4955243419426075cm and 0.13041747704333986cm);
\draw [rotate around={86.157546872085:(2.173228013337387,2.4831214064554827)}] (2.173228013337387,2.4831214064554827) ellipse (0.46750069112046705cm and 0.1344452240202966cm);
\draw [shift={(2.2965829659368096,2.189736654327123)},dash pattern=on 2pt off 2pt] plot[domain=-0.020405330686538825:1.4601391056210007,variable=\t]({1.*0.6535839211181232*cos(\t r)+0.*0.6535839211181232*sin(\t r)},{0.*0.6535839211181232*cos(\t r)+1.*0.6535839211181232*sin(\t r)});
\draw [rotate around={1.1708850280784644:(2.58494704784979,1.9915168803910728)}] (2.58494704784979,1.9915168803910728) ellipse (0.4223626584291288cm and 0.07777723849776252cm);
\draw [rotate around={-64.02560603756869:(2.3199203894015676,1.5529583855030706)}] (2.3199203894015676,1.5529583855030706) ellipse (0.4572702113179464cm and 0.14432623016288876cm);
\draw (2.1432227545969864,1.9963694313334333)-- (1.,1.);
\draw (1.2,2.6) node[anchor=north west] {$a_1$};
\draw (1.6,2.9298663699236602) node[anchor=north west] {$a_2$};
\draw (2.812673416271692,1.9430267491282782) node[anchor=north west] {$a_{n-1}$};
\draw (2.6259740285536464,1.4829461151088095) node[anchor=north west] {$a_n$};
\draw (1.0723684093284844,0.996194139986763) node[anchor=north west] {$x_0$};
\draw (1.645802243033909,1.4162677623523647) node[anchor=north west] {$\gamma$};
\draw (-0.3,2.2) node[anchor=north west] {\large{$L\equiv$}};
%\draw [->] (1.35,2.2308648946743626) -- (1.45,2.2512894804092745);
%\draw [->] (2.,2.9) -- (2.1,3);
%\draw [->] (2.8,1.92) -- (2.7,1.925);
%\draw [->] (2.539517043578322,1.3753231851333148) -- (2.5,1.5);
\begin{scriptsize}
\draw [fill=black] (2.1432227545969864,1.9963694313334333) circle (2.0pt);
\draw [fill=black] (1.,1.) circle (2.5pt);
\end{scriptsize}
\end{tikzpicture}
Por otro lado, $A\cap B$ se retrae con deformación fuerte a la circunferencia $S^1$. Sean $\alpha'_i=\gamma_\sharp[a_i]$ las clases de los lazos $\gamma*a_i*\overline{\gamma}$ ya vistos en $B$, que al representar generadores de $\pi_1(L,x_0)$ también son representantes de generadores de $\pi_1(B,x_0)$. Tenemos el siguiente diagrama, donde $\varepsilon$ la clase de la vuelta canónica de $S^1$ en $A\cap B$,
\[
\begin{tikzcd}
\pi_1(A\cap B,x_0)=\langle\varepsilon|\ \rangle \ar[r, "i_{1*}"]\arrow[d,"i_{2*}"'] & \pi_1(A,x_0)=\{1\}\arrow[d, dashed, "j_{1*}"]\\
\pi_1(B,x_0)=\langle \alpha'_1,\dots,\alpha'_n|\ \rangle\arrow[r,dashed,"j_{2*}"'] & \pi_1(S,x_0)
\end{tikzcd}
\]
Se tiene que $i_{1*}(\varepsilon)=1$ y $i_{2*}(\varepsilon)=\alpha'_1\alpha'_1\cdots\ \alpha_n'\alpha_n'={\alpha'}_1^2\cdots\ {\alpha'}_n^2$, así que sin más que aplicar el teorema de Seifert-Van Kampen obtenemos
\[
\pi_1(S,x_0)=\langle\alpha_1,\dots,\alpha_n|\alpha_1^2\cdots\ \alpha_n^2\rangle,
\]
donde $\alpha_i=j_{2*}(\alpha'_i)$ son las clases de los lazos $\gamma*a_i*\overline{\gamma}$ en $X$. Ahora, abelianizando
\[
(\pi_1(S,x))^{ab}=\langle\alpha_i|\alpha_1^2\cdots\ \alpha_n^2,\ [\alpha^{}_i,\alpha^{}_j]\ 1\leq i, j\leq n \rangle.
\]
Si ahora llamamos $\beta_i=\alpha_i$ para $1\leq i\leq n-1$ y $\beta_n=\alpha_1\cdots\ \alpha_n$ nos queda
\[
(\pi_1(S,x))^{ab}=\langle\beta_i|[\beta^{}_i,\beta^{}_j],\ \beta^2_n,\ 1, i\leq j\leq n-1\rangle\cong\Z\underbrace{\times\cdots\times}_{n-1\ veces}\Z\times\Z_2
\]
\section{Fin del teorema de clasificación de superficies.\\ Triangulación}
Los grupos abelianizados de modelos diferentes no son isomorfos. Por tanto, representan modelos de superficies no homeomorfas. Para terminar la clasificación de superficies queda probar que toda superficie conexa y compacta es homeomorfa a algún modelo. Para ello, hacemos uso de la idea triangulación.
\begin{defi}
Una \textbf{triangulación} de una superficie $S$ es un conjunto de vértices, aristas y triángulos $K$ en algún $\R^n$ cumpliendo:
\begin{enumerate}
\item Si $\sigma\in K$, entonces todas sus caras están en $K$.
\item Si $\sigma,\tau\in K$, entonces $\sigma\cap\tau$ es una cara común, posiblemente vacía.
\item $|K|=\underset{\sigma\in K}{\bigcup}\sigma\subseteq\R^n$ es homeomorfo a $S$.
\end{enumerate}
\end{defi}
\begin{ej}\label{ejem}\
\begin{enumerate}
\item El borde de un tetraedro triangula a $S^2$.
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1.008,-0.8) rectangle (11.258666666666668,2.2);
\draw (0.,0.)-- (2.,-0.6373333333333323);
\draw (0.,0.)-- (1.584,2.008);
\draw (2.,-0.6373333333333323)-- (3.,0.);
\draw (1.584,2.008)-- (3.,0.);
\draw (2.,-0.6373333333333323)-- (1.584,2.008);
\draw [dash pattern=on 3pt off 3pt] (0.,0.)-- (3.,0.);
\draw (3.12,1.1226666666666671) node[anchor=north west] {\large{$\cong\ S^2$}};
\end{tikzpicture}
\item Triangulación del toro.
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1.8733333333333335,-0.5) rectangle (13.46,3.5);
\draw (0.,0.)-- (3.,0.);
\draw (3.,0.)-- (3.,3.);
\draw (3.,3.)-- (0.,3.);
\draw (0.,3.)-- (0.,0.);
\draw (0.,2.)-- (3.,2.);
\draw (0.,1.)-- (3.,1.);
\draw (1.,3.)-- (1.,0.);
\draw (2.,3.)-- (2.,0.);
\draw (1.,3.)-- (0.,2.);
\draw (2.,3.)-- (0.,1.);
\draw (3.,3.)-- (0.,0.);
\draw (3.,2.)-- (1.,0.);
\draw (3.,1.)-- (2.,0.);
\draw [->] (0.,0.) -- (0.,1.54);
\draw [->] (3.,0.) -- (3.,1.46);
\draw [->] (0.,3.) -- (1.5266666666666668,3.);
\draw [->] (0.,0.) -- (1.5666666666666669,0.);
\draw (-0.5,0) node[anchor=north west] {$v_0$};
\draw (-0.6,3.2) node[anchor=north west] {$v_0$};
\draw (2.9,0) node[anchor=north west] {$v_0$};
\draw (3,3.2) node[anchor=north west] {$v_0$};
\draw (0.8,0.0) node[anchor=north west] {$v_1$};
\draw (0.8,3.4) node[anchor=north west] {$v_1$};
\draw (1.8,0.0) node[anchor=north west] {$v_2$};
\draw (1.8,3.4) node[anchor=north west] {$v_2$};
\draw (-0.6,2.2) node[anchor=north west] {$v_3$};
\draw (3,2.2) node[anchor=north west] {$v_3$};
\draw (-0.6,1.2) node[anchor=north west] {$v_4$};
\draw (3.,1.2) node[anchor=north west] {$v_4$};
\draw (1.,2.) node[anchor=north west] {$v_5$};
\draw (2.,2.) node[anchor=north west] {$v_6$};
\draw (1.,1.) node[anchor=north west] {$v_7$};
\draw (2.,1.) node[anchor=north west] {$v_8$};
\draw [fill=black] (0,0) circle (2pt);
\draw [fill=black] (0,1) circle (2pt);
\draw [fill=black] (1,0) circle (2pt);
\draw [fill=black] (1,1) circle (2pt);
\draw [fill=black] (0,2) circle (2pt);
\draw [fill=black] (2,0) circle (2pt);
\draw [fill=black] (2,2) circle (2pt);
\draw [fill=black] (1,2) circle (2pt);
\draw [fill=black] (2,1) circle (2pt);
\draw [fill=black] (0,3) circle (2pt);
\draw [fill=black] (3,0) circle (2pt);
\draw [fill=black] (3,3) circle (2pt);
\draw [fill=black] (1,3) circle (2pt);
\draw [fill=black] (3,1) circle (2pt);
\draw [fill=black] (2,3) circle (2pt);
\draw [fill=black] (3,2) circle (2pt);
\end{tikzpicture}
Observar que la triangulación aquí descrita no es plana pues las caras exteriores son iguales dos a dos. Al identificar tenemos una triangulación en el espacio tridimensional.
\end{enumerate}
\end{ej}
\begin{nota}
Se puede hablar de triangulación de espacios que no son superficies, por ejemplo, de grafos.
\end{nota}
\begin{prop}\label{534}
Toda triangulación de una superficie tiene las dos propiedades siguientes.
\begin{enumerate}
\item Toda arista de $K$ está exactamente en dos triángulos de $K$.
\item Dado un vértice $v\in K$, la unión de todos los triángulos que contienen a $v$ es homeomorfa a un disco.
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(5.810293012772353,-0.1) rectangle (16.283165995036764,2.7);
\fill[fill=black,fill opacity=0.09] (8.,0.) -- (9.5,0.) -- (10.25,1.299038105676658) -- (9.5,2.5980762113533165) -- (8.,2.598076211353317) -- (7.25,1.2990381056766593) -- cycle;
\draw (8.,0.)-- (9.5,0.);
\draw (9.5,0.)-- (10.25,1.299038105676658);
\draw (10.25,1.299038105676658)-- (9.5,2.5980762113533165);
\draw (9.5,2.5980762113533165)-- (8.,2.598076211353317);
\draw (8.,2.598076211353317)-- (7.25,1.2990381056766593);
\draw (7.25,1.2990381056766593)-- (8.,0.);
\draw (8.75,1.2990381056766576)-- (8.,2.598076211353317);
\draw (8.75,1.2990381056766576)-- (9.5,2.5980762113533165);
\draw (8.75,1.2990381056766576)-- (10.25,1.299038105676658);
\draw (8.75,1.2990381056766576)-- (9.5,0.);
\draw (8.75,1.2990381056766576)-- (8.,0.);
\draw (8.75,1.2990381056766576)-- (7.25,1.2990381056766593);
\draw (8.53,1.243118639437196) node[anchor=north west] {$v$};
\draw (10.573173508184778,1.6) node[anchor=north west] {\large{$\cong\ B^2$}};
\begin{scriptsize}
\draw [fill=black] (8.75,1.2990381056766576) circle (2.5pt);
\end{scriptsize}
\end{tikzpicture}
\end{enumerate}
\end{prop}
\begin{teorema}
Toda superficie es triangulable.
\end{teorema}
La demostración de este teorema no es sencilla. Existen varios métodos para probarlo. Una demostración puramente topológica puede encontrarse en \cite{Moise} o \cite{Doyle}, que usa técnicas topológicas más refinadas. Otra demostración de tipo geométrico basada en la existencia de geodésicas puede consultarse en \cite{Bloch}. Alternativamente puede verse en \cite{Mohar} una demostración basada en la caracterización por Kuratowski de los grafos planos.
Una vez que sabemos que toda superficie admite una triangulación, estamos en condiciones de completar el teorema de clasificación de las superficie con el siguiente resultado aún pendiente.
\begin{teorema}
Toda superficie conexa y compacta es homeomorfa a un modelo.
\end{teorema}
\begin{dem}
Sea $K$ una triangulación de $S$. Ordenando los triángulos $t_1,\dots,t_n$ (sólo hay una cantidad finita por compacidad) de forma que $t_i$ tenga alguna arista en común con $t_j$ para algún $j<i$. Ahora se forma una región plana de la siguiente manera: empezamos con una copia de $t_1$ en $\R^2$ y le pegamos una copia de $t_2$ por una arista común. Tomamos $t_3$, que tiene una arista en común con $t_1$ o con $t_2$ y la pegamos a $t_1\cup t_2$. Si hay más de una arista común, $t_1\cup t_2\cup t_3$ es homeomorfo a $B^2$. Seguimos hasta pegar todos los triángulos (sólo por una arista cada vez). Toda la unión es un polígono en cuyo perímetro faltan por identificar las aristas.
Vamos a llegar a uno de los tipos I o II mediante una serie de operaciones. Empezamos orientando la región eligiendo un sentido de recorrido del perímetro, y como las aristas deben quedar emparejadas por la proposición \ref{534}, nos encontramos con que cada arista $a$ del perímetro aparece dos veces. (Además, el sentido de recorrido, fijado uno de los sentidos sobre $a$, pueden coincidir en las dos apariciones de $a$ o ser uno opuesto del otro). Se forma así un código de letras y, posiblemente, sus inversos. El objetivo es demostrar que este código se puede ``normalizar'' a uno de los dos tipos I y II del teorema de clasificación, de forma que los pasos que se den representen homeomorfismos.\
Todo ello se alcanza al aplica una o varias veces cada una de las siguientes operaciones:
\begin{enumerate}
\item[$\circled{1}$] Simplificar grupos de letras que aparecen repetidas varias veces: $abc\cdots a^{-1}b^{-1}c^{-1}\longrightarrow x\cdots x^{-1}$.
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1.5133333333333334,-1) rectangle (13.82,3.1);
\fill[fill=black,fill opacity=0.09](1.,2.)-- (1.34,2.98)--(1.34,2.98)-- (3.,3.)--(3.62,2.0066666666666673)-- (3.66,0.9933333333333335)-- (3.18,0.)--(1.58,0.)--(1.,1.)-- cycle;
\draw (1.,2.)-- (1.34,2.98);
\draw (1.,2.)-- (1.,1.);
\draw (1.,1.)-- (1.58,0.);
\draw (3.,3.)-- (3.62,2.0066666666666673);
\draw (3.62,2.0066666666666673)-- (3.66,0.9933333333333335);
\draw (3.66,0.9933333333333335)-- (3.18,0.);
\draw [dash pattern=on 3pt off 3pt] (1.34,2.98)-- (3.,3.);
\draw [dash pattern=on 3pt off 3pt] (1.58,0.)-- (3.18,0.);
\draw [->] (1.58,0.) -- (1.3132335628055474,0.459942133093884);
\draw [->] (1.,1.) -- (1.,1.5533333333333337);
\draw [->] (1.,2.) -- (1.1811648079306072,2.522180916976456);
\draw [->] (3.62,2.0066666666666673)--(3.3,2.5);
\draw [->] (3.66,0.9933333333333335) -- (3.6399896283491793,1.6);
\draw [->] (3.18,0.) -- (3.45,0.6);
\draw [->] (4.446666666666667,1.54) -- (5.953333333333334,1.54);
\fill[fill=black,fill opacity=0.09](7.,3.)-- (7.,0.)--(9.,0.)-- (9.,3.)--cycle;
\draw (7.,3.)-- (7.,0.);
\draw (9.,3.)-- (9.,0.);
\draw [dash pattern=on 3pt off 3pt] (7.,3.)-- (9.,3.);
\draw [dash pattern=on 3pt off 3pt] (7.,0.)-- (9.,0.);
\draw [->] (7.,0.) -- (7.,1.54);
\draw [->] (9.,0.) -- (9.,1.54);
\draw (0.8,0.5) node[anchor=north west] {$a$};
\draw (0.5,1.7) node[anchor=north west] {$b$};
\draw (0.8,2.886666666666667) node[anchor=north west] {$c$};
\draw (3.3,2.806666666666667) node[anchor=north west] {$a$};
\draw (3.7,1.726666666666667) node[anchor=north west] {$b$};
\draw (3.5,0.6466666666666668) node[anchor=north west] {$c$};
\draw (6.5,1.74) node[anchor=north west] {$x$};
\draw (9.,1.66) node[anchor=north west] {$x$};
\end{tikzpicture}
\item[$\circled{2}$] Reducción, esto es, la eliminación de las apariciones de una arista con los dos sentidos de identificación distintos de manera consecutiva:
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-2.313333333333334,-0.5) rectangle (13.02,2.1);
\draw [dash pattern=on 3pt off 3pt,fill=black,fill opacity=0.09000000357627869] (6.993333333333335,0.7866666666666661) circle (1.2133516482134203cm);
\draw [dash pattern= on 3pt off 3pt,shift={(2.,1.)},color=black,fill=black,fill opacity=0.10000000149011612] (0,0) -- plot[domain=-3.9269908169872414:0.7853981633974483,variable=\t]({1.*1.4142135623730951*cos(\t r)+0.*1.4142135623730951*sin(\t r)},{0.*1.4142135623730951*cos(\t r)+1.*1.4142135623730951*sin(\t r)}) -- cycle ;
\draw (1.,2.)-- (2.,1.);
\draw (2.,1.)-- (3.,2.);
\draw [shift={(2.,1.)},dash pattern=on 3pt off 3pt] plot[domain=-3.9269908169872414:0.7853981633974483,variable=\t]({1.*1.4142135623730951*cos(\t r)+0.*1.4142135623730951*sin(\t r)},{0.*1.4142135623730951*cos(\t r)+1.*1.4142135623730951*sin(\t r)});
\draw [->] (4.013333333333333,0.92) -- (5.013333333333333,0.92);
\draw (7.,2.)-- (6.993333333333335,0.7866666666666661);
\draw [dash pattern=on 3pt off 3pt] (6.993333333333335,0.7866666666666661) circle (1.2133516482134203cm);
\draw [->] (1.,2.) -- (1.59,1.41);
\draw [->] (3.,2.) -- (2.39,1.39);
\draw [->] (7.,2.) -- (6.995677182389938,1.2132471949685528);
\draw (1.526666666666667,1.9066666666666663) node[anchor=north west] {$a$};
\draw (2.26,1.8933333333333329) node[anchor=north west] {$a$};
\draw (7.18,1.52) node[anchor=north west] {$a$};
\end{tikzpicture}
\item[$\circled{3}$] Quedarse con un solo vértice: %(copia esto de los terceros apuntes)
\definecolor{ffqqqq}{rgb}{1.,0.,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-0.9866666666666668,-0.4) rectangle (14.34666666666667,3.3);
\fill[fill=black,fill opacity=0.09](0.,0.)-- (2.,0.)--(2.,2.)--(1.,3.)--(0.,2.)--cycle;
\fill[fill=black,fill opacity=0.09](5.,0.)-- (7.,0.)--(7.,1.64)--(5.,1.64)--cycle;
\fill[fill=black,fill opacity=0.09](5,2)--(6,3)--(7,2)--cycle;
\fill[fill=black,fill opacity=0.09](10.,1.)-- (11.,0.)--(12,1)--(12,2.78)--(10,2.78)--cycle;
\draw (0.,0.)-- (2.,0.);
\draw (0.,2.)-- (1.,3.);
\draw (1.,3.)-- (2.,2.);
\draw [dash pattern=on 3pt off 3pt] (0.,2.)-- (0.,0.);
\draw [dash pattern=on 3pt off 3pt] (2.,2.)-- (2.,0.);
\draw [color=ffqqqq] (0.,2.)-- (2.,2.);
\draw [->] (3.013333333333333,1.32) -- (4.013333333333334,1.32);
\draw (5.,0.)-- (7.,0.);
\draw (5.,1.64)-- (7.01333,1.64);
\draw (5.,2.)-- (7.,2.);
\draw (5.,2.)-- (6.,3.);
\draw (6.,3.)-- (7.,2.);
\draw [dash pattern=on 3pt off 3pt] (5.,1.64)-- (5.,0.);
\draw [dash pattern=on 3pt off 3pt] (7.01333,1.64)-- (7.,0.);
\draw [->] (8.,1.3066666666666666) -- (9.,1.3066666666666666);
\draw (10.,1.)-- (11.,0.);
\draw (11.,0.)-- (12.,1.);
\draw (10.,1.)-- (12.,1.);
\draw (9.973333333333334,2.786666666666666)-- (11.973333333333334,2.786666666666666);
\draw [dash pattern=on 3pt off 3pt] (9.973333333333334,2.786666666666666)-- (10.,1.);
\draw [dash pattern=on 3pt off 3pt] (11.973333333333334,2.786666666666666)-- (12.,1.);
\draw [->] (12.,1.) -- (11.,1.);
\draw [->] (12.,1.) -- (11.433333333333334,0.43333333333333357);
\draw [->] (10.,1.) -- (10.653333333333334,0.3466666666666658);
\draw [->] (9.973333333333334,2.786666666666666) -- (10.973333333333334,2.786666666666666);
\draw [->] (6.,3.) -- (6.46,2.54);
\draw [->] (5.,2.) -- (6.,2.);
\draw [->] (5.,2.) -- (5.56,2.56);
\draw [->] (7.,0.) -- (6.,0.);
\draw [->] (5.,1.64) -- (6.,1.64);
\draw [->] (1.,3.) -- (1.4733333333333336,2.5266666666666664);
\draw [->] (0.,2.) -- (0.5533333333333333,2.5533333333333332);
\draw [->] (2.,0.) -- (1.,0.);
\draw [->,color=ffqqqq] (0.,2.) -- (1.,2.);
\draw (0.1466666666666667,2.8666666666666663) node[anchor=north west] {$a$};
\draw [color=ffqqqq] (0.9466666666666669,2.053333333333333) node[anchor=north west] {$c$};
\draw (1.6,2.9333333333333327) node[anchor=north west] {$b$};
\draw (1.08,3.306666666666666) node[anchor=north west] {$P$};
\draw (2.0266666666666673,2.133333333333333) node[anchor=north west] {$Q$};
\draw (-0.6,0.1333333333333333) node[anchor=north west] {$P$};
\draw (6,3.2533333333333325) node[anchor=north west] {$P$};
\draw (7.,2.3) node[anchor=north west] {$Q$};
\draw (7.0133333333333345,1.8) node[anchor=north west] {$Q$};
\draw (4.4,0.16) node[anchor=north west] {$P$};
\draw (11.,0.16) node[anchor=north west] {$Q$};
\draw (9.4,1.0533333333333332) node[anchor=north west] {$P$};
\draw (11.973333333333336,2.946666666666666) node[anchor=north west] {$Q$};
\draw (0.9466666666666669,-0.05) node[anchor=north west] {$a$};
\draw (5.9333333333333345,2.4) node[anchor=north west] {$c$};
\draw (5.986666666666668,1.72) node[anchor=north west] {$c$};
\draw (10.866666666666669,3.2133333333333325) node[anchor=north west] {$c$};
\draw (10.946666666666669,1.4) node[anchor=north west] {$a$};
\draw (11.66666666666667,0.6133333333333332) node[anchor=north west] {$c$};
\draw (5.12,2.84) node[anchor=north west] {$a$};
\draw (6.586666666666668,2.88) node[anchor=north west] {$b$};
\draw (10.1,0.5333333333333332) node[anchor=north west] {$b$};
\draw (6.12,0.) node[anchor=north west] {$a$};
\begin{scriptsize}
\draw [fill=black] (0.,0.) circle (2.5pt);
\draw [fill=black] (1.,3.) circle (2.5pt);
\draw [fill=black] (2.,2.) circle (2.5pt);
\draw [fill=black] (5.,0.) circle (2.5pt);
\draw [fill=black] (7.01333,1.64) circle (2.5pt);
\draw [fill=black] (7.,2.) circle (2.5pt);
\draw [fill=black] (6.,3.) circle (2.5pt);
\draw [fill=black] (10.,1.) circle (2.5pt);
\draw [fill=black] (11.,0.) circle (2.5pt);
\draw [fill=black] (11.973333333333334,2.786666666666666) circle (2.5pt);
\end{scriptsize}
\end{tikzpicture}
Ahora $P$ aparece una vez menos y $Q$ una vez más. Reiteramos hasta acabar con $P$ y si queda otro vértice distinto de $Q$ se reitera este procedimiento hasta obtener un solo vértice.
\item[$\circled{4}$] Dejar consecutivos los lados con sentidos de identificación iguales: %(copia esto de los terceros apuntes)
\definecolor{ffqqqq}{rgb}{1.,0.,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-0.98,-0.3) rectangle (14.353333333333335,2.4);
\fill[fill=black,fill opacity=0.09](0.,2.)-- (2.,2.)--(2.,0.)--(0,0)--cycle;
\fill[fill=black,fill opacity=0.09](5.,2.)-- (7.,2.)--(5,0.78)--cycle;
\fill[fill=black,fill opacity=0.09](5,0)--(7,0)--(7,1.24)--cycle;
\fill[fill=black,fill opacity=0.09](11,0)--(11,2)--(10,1)--cycle;
\draw (0.,2.)-- (2.,2.);
\draw (0.,0.)-- (2.,0.);
\draw [dash pattern=on 3pt off 3pt] (0.,0.)-- (0.,2.);
\draw [dash pattern=on 3pt off 3pt] (2.,2.)-- (2.,0.);
\draw [->] (3.,1.) -- (4.,1.);
\draw (5.,2.)-- (7.,2.);
\draw (7.,2.)-- (4.993333333333334,0.78);
\draw (5.,0.)-- (7.,0.);
\draw (5.,0.)-- (7.006666666666668,1.2466666666666664);
\draw [dash pattern=on 3pt off 3pt] (5.,2.)-- (4.993333333333334,0.78);
\draw [dash pattern=on 3pt off 3pt] (7.,0.)-- (7.006666666666668,1.2466666666666664);
\draw [->] (8.,1.) -- (9.,1.);
\draw (11.,0.)-- (10.,1.);
\draw (10.,1.)-- (11.,2.);
\draw (10.,1.)-- (11.,1.);
\draw [dash pattern=on 3pt off 3pt] (11.,2.)-- (11.,0.);
\draw [color=ffqqqq] (2.,2.)-- (0.,0.);
\draw [->,color=ffqqqq] (2.,2.) -- (1.,1.);
\draw [->] (0.,2.) -- (1.,2.);
\draw [->] (2.,0.) -- (1.,0.);
\draw [->] (5.,2.) -- (6.,2.);
\draw [->] (7.,2.) -- (5.976242619604052,1.3775827222177455);
\draw [->] (7.006666666666668,1.2466666666666664) -- (5.987336890446233,0.6133953438984899);
\draw [->] (7.,0.) -- (6.,0.);
\draw [->] (11.,1.) -- (10.46,1.);
\draw [->] (11.,2.) -- (10.44,1.44);
\draw [->] (10.,1.) -- (10.546666666666667,0.45333333333333314);
\draw (0.8333333333333335,2.446666666666666) node[anchor=north west] {$a$};
\draw (0.9133333333333336,0.0066666666666666645) node[anchor=north west] {$a$};
\draw [color=ffqqqq](1.0333333333333334,1.073333333333333) node[anchor=north west] {$b$};
\draw (5.913333333333335,2.3933333333333326) node[anchor=north west] {$a$};
\draw (6.153333333333334,0.0066666666666666645) node[anchor=north west] {$a$};
\draw (5.673333333333335,1.74) node[anchor=north west] {$b$};
\draw (6.273333333333334,0.9) node[anchor=north west] {$b$};
\draw (10.2,1.9) node[anchor=north west] {$b$};
\draw (10.206666666666669,0.5) node[anchor=north west] {$b$};
\draw (10.633333333333335,1.06) node[anchor=north west] {$a$};
\end{tikzpicture}
Si todas eran parejas de símbolos iguales hemos terminado con una superficie de tipo II suponemos ahora que aparecen parejas con símbolos opuestos (digamos, $c$ y $c^{-1}$) y que todas las parejas de símbolos iguales son ya consecutivas. Afirmamos ahora que existe otra pareja de símbolos opuestos separada por las apariciones del lado $c$.
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1.201942490267058,-0.4) rectangle (9.27093049199736,2);
\fill[fill=black,fill opacity=0.09](0.,0.)-- (2.,0.)--(2,1.5)--(0,1.5)--cycle;
\draw (0.,0.)-- (2.,0.);
\draw (0.,1.5)-- (2.,1.5);
\draw [dash pattern=on 2pt off 2pt] (0.,1.5)-- (0.,0.);
\draw [dash pattern=on 2pt off 2pt] (2.,1.5)-- (2.,0.);
\draw [->] (2.,1.5) -- (0.9837005669011685,1.5);
\draw [->] (2.,0.) -- (1.0292347972588398,0.);
\draw (-0.5,0.8511690913644328) node[anchor=north west] {$A$};
\draw (2.,0.8147417070782956) node[anchor=north west] {$B$};
\draw (1.0292347972588398,1.9) node[anchor=north west] {$c$};
\draw (0.9654868747580999,0.0) node[anchor=north west] {$c$};
\end{tikzpicture}
Si esto no ocurriera, las partes $A$ y $B$ se identificarían por un vértice $P$ y ya no tendríamos una superficie en $P$. En efecto, al identificar pequeños entornos de los vértices del polígono se forma un entorno de $P$ en el espacio cociente. Este entorno estaría formado por dos partes: una correspondiente a las identificaciones de la parte $A$ y otra a las de $B$. Sean estas $Z$ e $Y$, respectivamente. Tenemos que $Z\cap Y$ se reduce al punto $P$ mientrar que, por ser $P$ un punto de superficie, debe existir un pequeño disco de centro $P$, $D$, contenido en $Z\cup Y$. Como $D-\{P\}$ es conexo debería estar contenido en $Z_\{P\}$ o en $Y-\{P\}$. En l primer caso (igualmente en el segundo) $Z$ sería entonces un entorno de $P$ en la superficie, pero esto no es posible pues todo entorno de $P$ en la superficie contiene puntos de $B$ distintos de $P$.
\par
Más precisamente $Z$ e $Y$ son discos de forma que $Z\cup Y$ resulta ser el espacio formado por dos discos pegados por sus centros, que nunca podrás un punto de superficie; ver dibujo pata un caso particular.
\definecolor{qqqqff}{rgb}{0.3333333333333333,0.3333333333333333,0.3333333333333333}
\definecolor{zzttqq}{rgb}{0.26666666666666666,0.26666666666666666,0.26666666666666666}
\definecolor{yqqqqq}{rgb}{0.16470588235294117,0.16470588235294117,0.16470588235294117}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-2.5,-0.3) rectangle (9.816569431417882,3.4);
\fill[color=yqqqqq,fill=yqqqqq,fill opacity=0.10000000149011612] (0.,0.) -- (3.,0.) -- (3.,3.) -- (0.,3.) -- cycle;
\fill[color=qqqqff,fill=qqqqff,fill opacity=0.10000000149011612] (0.6,3.) -- (0.,3.) -- (0.,2.4) -- (0.6,2.4) -- cycle;
\fill[color=qqqqff,fill=qqqqff,fill opacity=0.10000000149011612] (0.,0.) -- (0.6,0.) -- (0.6,0.6) -- (0.,0.6) -- cycle;
\fill[color=qqqqff,fill=qqqqff,fill opacity=0.10000000149011612] (0.,2.) -- (0.6,2.) -- (0.6,1.) -- (0.,1.) -- cycle;
\fill[color=qqqqff,fill=qqqqff,fill opacity=0.20000000149011612] (5.5,2.) -- (5.5,1.5) -- (6.,1.5) -- (6.,2.) -- cycle;
\fill[color=qqqqff,fill=qqqqff,fill opacity=0.20000000149011612] (5.5,1.5) -- (5.5,1.) -- (6.,1.) -- (6.,1.5) -- cycle;
\fill[color=qqqqff,fill=qqqqff,fill opacity=0.2] (6.,2.) -- (6.5,2.) -- (6.5,1.) -- (6.,1.) -- cycle;
\draw [color=yqqqqq] (0.,0.)-- (3.,0.);
\draw [color=yqqqqq] (3.,0.)-- (3.,3.);
\draw [color=zzttqq] (3.,3.)-- (0.,3.);
\draw [color=zzttqq] (0.,3.)-- (0.,0.);
\draw [color=qqqqff] (0.6,3.)-- (0.,3.);
\draw [color=qqqqff] (0.,3.)-- (0.,2.4);
\draw [color=qqqqff] (0.,2.4)-- (0.6,2.4);
\draw [color=qqqqff] (0.6,2.4)-- (0.6,3.);
\draw [color=qqqqff] (0.,0.)-- (0.6,0.);
\draw [color=qqqqff] (0.6,0.)-- (0.6,0.6);
\draw [color=qqqqff] (0.6,0.6)-- (0.,0.6);
\draw [color=qqqqff] (0.,0.6)-- (0.,0.);
\draw [color=qqqqff] (0.,2.)-- (0.6,2.);
\draw [color=qqqqff] (0.6,2.)-- (0.6,1.);
\draw [color=qqqqff] (0.6,1.)-- (0.,1.);
\draw [color=qqqqff] (0.,1.)-- (0.,2.);
\draw [shift={(3.,3.)},color=qqqqff,fill=qqqqff,fill opacity=0.10000000149011612] (0,0) -- plot[domain=3.141592653589793:4.71238898038469,variable=\t]({1.*0.6*cos(\t r)+0.*0.6*sin(\t r)},{0.*0.6*cos(\t r)+1.*0.6*sin(\t r)}) -- cycle ;
\draw [shift={(3.,1.5)},color=qqqqff,fill=qqqqff,fill opacity=0.10000000149011612] (0,0) -- plot[domain=1.5707963267948966:4.71238898038469,variable=\t]({1.*0.5*cos(\t r)+0.*0.5*sin(\t r)},{0.*0.5*cos(\t r)+1.*0.5*sin(\t r)}) -- cycle ;
\draw [shift={(3.,0.)},color=qqqqff,fill=qqqqff,fill opacity=0.10000000149011612] (0,0) -- plot[domain=1.5707963267948966:3.141592653589793,variable=\t]({1.*0.6*cos(\t r)+0.*0.6*sin(\t r)},{0.*0.6*cos(\t r)+1.*0.6*sin(\t r)}) -- cycle ;
\draw [color=qqqqff] (5.5,2.)-- (5.5,1.5);
\draw [color=qqqqff] (5.5,1.5)-- (6.,1.5);
\draw [color=qqqqff] (6.,1.5)-- (6.,2.);
\draw [color=qqqqff] (6.,2.)-- (5.5,2.);
\draw [color=qqqqff] (5.5,1.5)-- (5.5,1.);
\draw [color=qqqqff] (5.5,1.)-- (6.,1.);
\draw [color=qqqqff] (6.,1.)-- (6.,1.5);
\draw [color=qqqqff] (6.,1.5)-- (5.5,1.5);
\draw [color=qqqqff] (6.,2.)-- (6.5,2.);
\draw [color=qqqqff] (6.5,2.)-- (6.5,1.);
\draw [color=qqqqff] (6.5,1.)-- (6.,1.);
\draw [color=qqqqff] (6.,1.)-- (6.,2.);
\draw [shift={(8.,1.5)},color=qqqqff,fill=qqqqff,fill opacity=0.20000000149011612] (0,0) -- plot[domain=1.5707963267948966:4.71238898038469,variable=\t]({1.*0.5*cos(\t r)+0.*0.5*sin(\t r)},{0.*0.5*cos(\t r)+1.*0.5*sin(\t r)}) -- cycle ;
\draw [shift={(8.,1.5)},color=qqqqff,fill=qqqqff,fill opacity=0.20000000149011612] (0,0) -- plot[domain=-1.5707963267948966:0.,variable=\t]({1.*0.5*cos(\t r)+0.*0.5*sin(\t r)},{0.*0.5*cos(\t r)+1.*0.5*sin(\t r)}) -- cycle ;
\draw [shift={(8.,1.5)},color=qqqqff,fill=qqqqff,fill opacity=0.20000000149011612] (0,0) -- plot[domain=0.:1.5707963267948966,variable=\t]({1.*0.5*cos(\t r)+0.*0.5*sin(\t r)},{0.*0.5*cos(\t r)+1.*0.5*sin(\t r)}) -- cycle ;
\draw [->] (0.,1.5) -- (0.,2.2);
\draw [->] (0.,0.) -- (0.,0.8);
\draw [->] (3.,0.) -- (1.5,0.);
\draw [->] (3.,3.) -- (1.5,3.);
\draw [->] (3.,0.) -- (3.,0.8);
\draw [->] (3.,1.5) -- (3.,2.2);
\draw (-0.5,3.332938800526409) node[anchor=north west] {$P$};
\draw (-0.5,1.6622164846051695) node[anchor=north west] {$P$};
\draw (-0.5,0.1) node[anchor=north west] {$P$};
\draw (3.,3.153595727065937) node[anchor=north west] {$P$};
\draw (3.,1.690533811993665) node[anchor=north west] {$P$};
\draw (3.,0.10476347823791206) node[anchor=north west] {$P$};
\draw (5.9,1.6150209389576768) node[anchor=north west] {$P$};
\draw (7.5,1.633899157216674) node[anchor=north west] {$P$};
\draw (1.4346405244233336,3.4650863283393885) node[anchor=north west] {$c$};
\draw (1.5479098339773139,-0.017944940445568828) node[anchor=north west] {$c$};
\draw (-0.5,2.247441250634078) node[anchor=north west] {$a$};
\draw (-0.5,0.8787704268567914) node[anchor=north west] {$a$};
\draw (3.,2.3607105601880605) node[anchor=north west] {$b$};
\draw (3.,0.8598922085977944) node[anchor=north west] {$b$};
\begin{scriptsize}
\draw [fill=black] (0.,0.) circle (2.5pt);
\draw [fill=black] (3.,0.) circle (2.5pt);
\draw [fill=black] (3.,3.) circle (2.5pt);
\draw [fill=black] (0.,3.) circle (2.5pt);
\draw [fill=black] (0.,1.5) circle (2.5pt);
\draw [fill=black] (3.,1.5) circle (2.5pt);
\draw [fill=black] (6.,1.5) circle (2.5pt);
\draw [fill=black] (6.,1.5) circle (2.5pt);
\draw [fill=black] (8.,1.5) circle (2.5pt);
\end{scriptsize}
\end{tikzpicture}
\item[$\circled{5}$] Poner juntos los grupos de cuatro lados con símbolos opuestos dos a dos.
\definecolor{ffqqqq}{rgb}{1.,0.,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-0.20353195864803264,-0.5) rectangle (12.441850006781989,3);
\fill[fill=black,fill opacity=0.09] (2.,0.)-- (1.,0.)--(0.5,0.5)--(0.5,1.5)--(1,2)--(2,2)--(2.5,1.5)--(2.5,0.5)--cycle;
\fill[fill=black,fill opacity=0.09](4,1.5)--(4,2.5)--(5.5,2.5)--(5.5,1.5)--(5.2,1)--(4.3,1)--cycle;
\fill[fill=black,fill opacity=0.09](4,0)--(5.5,0)--(5.2,0.5)--(4.3,0.5)--cycle;
\fill[fill=black,fill opacity=0.09](7.5,0)--(9,0)--(9,2)--(7.5,2)--cycle;
\fill[fill=black,fill opacity=0.09](10.5,0.)-- (10.500463974611332,0.7259541276919175)--(11.5,0.7259541276919175)--(12.1,0.5)--(11.5,0)--cycle;
\fill[fill=black,fill opacity=0.09](10.5,1.35)--(10.5,2)--(11.8,2)--(11,1.35)--cycle;
\draw (2.,0.)-- (1.,0.);
\draw (0.5,0.5)-- (0.4908931539284658,1.4817863078569313);
\draw (1.,2.)-- (2.,2.);
\draw (2.5,0.5)-- (2.5,1.5);
\draw [dash pattern=on 3pt off 3pt] (1.,2.)-- (0.4908931539284658,1.4817863078569313);
\draw [dash pattern=on 3pt off 3pt] (0.5,0.5)-- (1.,0.);
\draw [dash pattern=on 3pt off 3pt] (2.,0.)-- (2.5,0.5);
\draw [dash pattern=on 3pt off 3pt] (2.,2.)-- (2.5,1.5);
\draw [->] (3.,1.) -- (3.5,1.);
\draw [color=ffqqqq] (0.4908931539284658,1.4817863078569313)-- (2.5,1.5);
\draw [->,color=ffqqqq] (2.5,1.5) -- (1.3,1.4908931539284658);
\draw (4.,1.5)-- (4.,2.5);
\draw (4.,2.5)-- (5.5,2.5);
\draw (5.5,2.5)-- (5.5,1.5);
\draw (5.5,0.)-- (4.,0.);
\draw (4.300202627325093,0.4961887849190603)-- (5.219994080550054,0.5052956309905946);
\draw (4.30931,1.)-- (5.22910092662159,0.9970653188534455);
\draw [dash pattern=on 3pt off 3pt] (4.30931,1.)-- (4.,1.5);
\draw [dash pattern=on 3pt off 3pt] (5.22910092662159,0.9970653188534455)-- (5.5,1.5);
\draw [dash pattern=on 3pt off 3pt] (4.300202627325093,0.4961887849190603)-- (4.,0.);
\draw [dash pattern=on 3pt off 3pt] (5.219994080550054,0.5052956309905946)-- (5.5,0.);
\draw [->] (6.,1.) -- (7.,1.);
\draw (7.5,0.)-- (9.,0.);
\draw (7.5,1.)-- (7.5,2.);
\draw (7.5,2.)-- (9.,2.);
\draw (9.,2.)-- (9.,1.);
\draw [dash pattern=on 3pt off 3pt] (7.5,1.)-- (7.5,0.);
\draw [dash pattern=on 3pt off 3pt] (9.,1.)-- (9.,0.);
\draw [->] (1.,2.) -- (1.5,2.);
\draw [->] (0.5,0.5) -- (0.5,1.);
\draw [->] (2.5,0.5) -- (2.5,1.);
\draw [->] (1.,0.) -- (1.5,0.);
\draw [->] (4.,1.5) -- (4.,2.);
\draw [->] (5.5,2.5) -- (4.746438084830273,2.5);
\draw [->] (5.5,1.5) -- (5.5,2.);
\draw [->] (4.300202627325093,0.4961887849190603) -- (4.78281815850655,0.5009671565149163);
\draw [->] (5.5,0.) -- (4.71911754661567,0.);
\draw [->] (9.,2.) -- (8.261680668442505,2.);
\draw [->] (7.5,1.) -- (7.5,1.5);
\draw [->] (9.,1.) -- (9.,1.5);
\draw [->] (9.,0.) -- (8.191304347826089,0.);
\draw [->] (9.5,1.) -- (10.,1.);
\draw [->] (4.30931,1.) -- (4.8284328345016485,0.9983436888198565);
\draw (1.3455547981943938,2.4480714961213645) node[anchor=north west] {$b$};
\draw (0.016196659343800938,1.096740495471607) node[anchor=north west] {$a$};
\draw (2.5870214898482535,1.1626590808691561) node[anchor=north west] {$a$};
\draw (1.3675276599935773,0.009083836412045989) node[anchor=north west] {$b$};
\draw [color=ffqqqq] (1.4883783998890856,1.4702791460577187) node[anchor=north west] {$c$};
\draw (4.7513483770678135,2.9) node[anchor=north west] {$c$};
\draw (4.7513483770678135,0.009083836412045989) node[anchor=north west] {$c$};
\draw (3.5428409781127295,2.0305871219368865) node[anchor=north west] {$a$};
\draw (5.619276418135557,2.0086142601377035) node[anchor=north west] {$a$};
\draw (4.718389084369039,1.4263334224593527) node[anchor=north west] {$b$};
\draw (4.773321238866997,0.9) node[anchor=north west] {$b$};
\draw [color=ffqqqq] (8.,1.4) node[anchor=north west] {$d$};
\draw (8.190101248640008,2.4) node[anchor=north west] {$c$};
\draw (8.26700626493715,0.020070267311637514) node[anchor=north west] {$c$};
\draw (7.003566711484107,1.558170593254451) node[anchor=north west] {$a$};
\draw (9.123947875105301,1.580143455053634) node[anchor=north west] {$a$};
\draw (5.3,1.) node[anchor=north west] {$\text{Pegar por b}$};
\draw [color=ffqqqq] (7.5,0.)-- (8.,1.);
\draw [color=ffqqqq] (8.,1.)-- (7.5,2.);
\draw [->,color=ffqqqq] (7.5,0.) -- (7.7652072945837025,0.5304145891674049);
\draw [->,color=ffqqqq] (8.,1.) -- (7.771197777929561,1.4576044441408786);
\draw (10.5,2.)-- (11.713790923054455,1.9891438274409148);
\draw (11.713790923054455,1.9891438274409148)-- (11.,1.3573497176921505);
\draw [dash pattern=on 3pt off 3pt] (10.5,2.)-- (10.5,1.3573497176921505);
\draw [dash pattern=on 3pt off 3pt] (10.5,1.3573497176921505)-- (11.,1.3573497176921505);
\draw (11.5,0.)-- (10.5,0.);
\draw (10.5,0.)-- (10.500463974611332,0.7259541276919175);
\draw (10.500463974611332,0.7259541276919175)-- (11.497719000728969,0.709333210589957);
\draw (11.497719000728969,0.709333210589957)-- (12.137624309154452,0.49326128826447063);
\draw [dash pattern=on 3pt off 3pt] (12.137624309154452,0.49326128826447063)-- (11.5,0.);
\draw [->] (10.5,2.) -- (11.140192181601485,1.9942741071279777);
\draw [->] (11.,1.3573497176921505) -- (11.454922927229768,1.760013322019753);
\draw [->] (12.137624309154452,0.49326128826447063) -- (11.828861520668152,0.5975188532078959);
\draw [->] (11.497719000728969,0.709333210589957) -- (11.007261169222627,0.7175075077817293);
\draw [->] (10.5,0.) -- (10.500272757052722,0.4267671192434781);
\draw [->] (11.5,0.) -- (11.,0.);
\draw (10.705993924646503,2.4480714961213645) node[anchor=north west] {$a$};
\draw (11.72773199830853,1.0) node[anchor=north west] {$a$};
\draw (11.3,1.8) node[anchor=north west] {$d$};
\draw (10.793885371843237,1.1077269263711984) node[anchor=north west] {$c$};
\draw (10.013848777972227,0.5144596577932561) node[anchor=north west] {$d$};
\draw (10.804871802742827,0.06401599091000361) node[anchor=north west] {$c$};
\end{tikzpicture}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-2.8597603946441175,-0.5) rectangle (10.11839323467231,3);
\fill[fill=black,fill opacity=0.09](2.9809725158562377,1.3407892882311478)--(4.424242424242426,0.)--(6.239605355884429,0.)--(6.24,2.52)--(4.424242424242426,2.52)--cycle;
\draw [dash pattern=on 1pt off 1pt](6.24,1.2)--(4.424242424242426,2.52);
\draw [->,dash pattern=on 1pt off 1pt](6.24,1.2)--(5.3,1.9);
\draw [->] (0.,1.4309936575052846) -- (1.9887244538407334,1.4309936575052846);
\draw (2.9809725158562377,1.3407892882311478)-- (4.424242424242426,0.);
\draw (2.9809725158562377,1.3407892882311478)-- (4.379140239605357,2.5247216349541928);
\draw (4.424242424242426,0.)-- (6.239605355884429,0.);
\draw (4.379140239605357,2.5247216349541928)-- (6.24,2.52);
\draw [dash pattern=on 3pt off 3pt] (6.24,2.52)-- (6.239605355884429,0.);
\draw [->] (6.239605355884429,0.) -- (5.1797040169133215,0.);
\draw [->] (4.424242424242426,0.) -- (3.6347600686255266,0.7334244824949211);
\draw [->] (2.9809725158562377,1.3407892882311478) -- (3.7566084569959526,1.9975777867768743);
\draw [->] (6.24,2.52) -- (5.202492638270481,2.522632509514492);
\draw (0.015503875968991615,2.0511486962649745) node[anchor=north west] {$\text{Pegar por a}$};
\draw (5.5,2.0511486962649745) node[anchor=north west] {$a$};
\draw (4.931642001409445,3.0095701198026776) node[anchor=north west] {$d$};
\draw (3.341789992952785,2.4) node[anchor=north west] {$c$};
\draw (3.3,0.8221141649048616) node[anchor=north west] {$d$};
\draw (5.168428470754054,-0.0010007047216362877) node[anchor=north west] {$c$};
\end{tikzpicture}
Con esto llegaríamos a una superficie de Tipo I, a menos que aparezcan mezclados pares del mismo sentido de identificación con grupos de dos pares con sentidos de identificación opuestos.
\item[$\circled{6}$] Si aparecen pares con el mismo símbolo ($aa$) seguidos de grupos de cuatro de la forma $bcb^{-1}c^{-1}$, pasamos todo a pares del mismo símbolo, es decir, nos lo llevamos a una superficie de tipo II.
\definecolor{ffqqqq}{rgb}{1.,0.,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(0,-1.9466666666666679) rectangle (16.293333333333337,3.8);
\fill[fill=black,fill opacity=0.09](2.,3.)-- (3.,3.)--(3.64,2.0133333333333323)--(3.653333333333334,1.)--(3,0)--(2,0)--(1.413333333333334,1.0133333333333323)--cycle;
\fill[fill=black,fill opacity=0.09](7.,3.)--(8,3)--(8.64,1.98)--(8,1)--(7,1)--cycle;
\fill[fill=black,fill opacity=0.09](9,0)--(9,1)--(10,1)--(10,0)--cycle;
\fill[fill=black,fill opacity=0.09](13.26666666666667,0.)-- (12.533333333333335,1.0266666666666648)--(12.6,2)--(13,3)--(14,3)--(14.39,2.)--(14.3,0)--cycle;
\draw (2.,3.)-- (3.,3.);
\draw (3.,3.)-- (3.64,2.0133333333333323);
\draw (3.64,2.0133333333333323)-- (3.653333333333334,1.);
\draw (3.653333333333334,1.)-- (3.,0.);
\draw (3.,0.)-- (2.,0.);
\draw (2.,0.)-- (1.413333333333334,1.0133333333333323);
\draw [dash pattern=on 3pt off 3pt] (2.,3.)-- (1.413333333333334,1.0133333333333323);
\draw [color=ffqqqq] (2.,0.)-- (3.64,2.0133333333333323);
\draw [->] (4.586666666666668,1.5066666666666648) -- (5.9733333333333345,1.52);
\draw (8.,3.)-- (7.,3.);
\draw (7.,3.)-- (7.,1.);
\draw (7.,1.)-- (8.,1.);
\draw (8.,1.)-- (8.64,1.9866666666666648);
\draw [dash pattern=on 3pt off 3pt] (8.64,1.9866666666666648)-- (8.,3.);
\draw (9.,0.)-- (9.,1.);
\draw (9.,1.)-- (10.,1.);
\draw (10.,1.)-- (10.,0.);
\draw (10.,0.)-- (9.,0.);
\draw [->] (10.,2.) -- (11.386666666666668,1.9866666666666648);
\draw (14.32,0.)-- (13.26666666666667,0.);
\draw (13.26666666666667,0.)-- (12.533333333333335,1.0266666666666648);
\draw (12.533333333333335,1.0266666666666648)-- (12.58666666666667,1.9733333333333314);
\draw (12.58666666666667,1.9733333333333314)-- (13.,3.);
\draw (13.,3.)-- (14.,3.);
\draw (14.,3.)-- (14.413333333333336,1.9866666666666648);
\draw [dash pattern=on 3pt off 3pt] (14.413333333333336,1.9866666666666648)-- (14.32,0.);
\draw [color=ffqqqq] (13.26666666666667,0.)-- (12.58666666666667,1.9733333333333314);
\draw [->] (2.,3.) -- (2.56,3.);
\draw [->] (3.,3.) -- (3.335794344473009,2.482317052270777);
\draw [->] (3.653333333333334,1.) -- (3.6464854884311353,1.5204362125670763);
\draw [->] (3.,0.) -- (3.3072929645319378,0.4703463742835776);
\draw [->] (3.,0.) -- (2.453333333333334,0.);
\draw [->] (2.,0.) -- (1.696625172890734,0.5240110650069141);
\draw [->] (7.,3.) -- (7.533333333333335,3.);
\draw [->] (7.,3.) -- (7.,2.);
\draw [->] (8.,1.) -- (7.573333333333335,1.);
\draw [->] (8.64,1.9866666666666648) -- (8.285943444730076,1.440829477292201);
\draw [->] (9.,1.) -- (9.52,1.);
\draw [->] (9.,0.) -- (9.586666666666668,0.);
\draw [->] (9.,0.) -- (9.,0.5733333333333317);
\draw [->] (10.,0.) -- (10.,0.506666666666665);
\draw [->] (14.32,0.) -- (13.813333333333336,0.);
\draw [->] (13.26666666666667,0.) -- (12.832432432432434,0.6079279279279285);
\draw [->] (12.58666666666667,1.9733333333333314) -- (12.552137631006527,1.3604429503658297);
\draw [->] (12.58666666666667,1.9733333333333314) -- (12.819669085631352,2.5520812772133543);
\draw [->] (13.,3.) -- (13.50666666666667,3.);
\draw [->] (14.413333333333336,1.9866666666666648) -- (14.185162535253081,2.5460531393795445);
\draw [->,color=ffqqqq] (2.,0.) -- (2.8442994990772474,1.0364977590297912);
\draw [->,color=ffqqqq] (13.26666666666667,0.) -- (12.930343467319597,0.9759967353601313);
\draw (2.3466666666666676,3.5466666666666646) node[anchor=north west] {$b$};
\draw (3.48,2.8133333333333312) node[anchor=north west] {$c$};
\draw (3.7866666666666675,1.7333333333333314) node[anchor=north west] {$b$};
\draw (3.5066666666666673,0.6933333333333317) node[anchor=north west] {$c$};
\draw (2.2933333333333343,0) node[anchor=north west] {$a$};
\draw (1.36,0.5733333333333317) node[anchor=north west] {$a$};
\draw (6.506666666666668,2.253333333333331) node[anchor=north west] {$e$};
\draw (7.293333333333335,1.) node[anchor=north west] {$c$};
\draw (8.52,1.6) node[anchor=north west] {$b$};
\draw (7.333333333333335,3.5466666666666646) node[anchor=north west] {$a$};
\draw (9.32,1.5733333333333315) node[anchor=north west] {$b$};
\draw (9.333333333333336,0.026666666666665145) node[anchor=north west] {$a$};
\draw (10.2,0.6533333333333317) node[anchor=north west] {$e$};
\draw (8.533333333333335,0.68) node[anchor=north west] {$c$};
\draw (14.2,2.9333333333333313) node[anchor=north west] {$e$};
\draw (13.22666666666667,3.52) node[anchor=north west] {$b$};
\draw (12.34666666666667,2.8) node[anchor=north west] {$c$};
\draw (12.093333333333335,1.7) node[anchor=north west] {$e$};
\draw (12.52,0.52) node[anchor=north west] {$c$};
\draw (13.76,-0.09333333333333484) node[anchor=north west] {$b$};
\draw [color=ffqqqq](2.5066666666666677,1.386666666666665) node[anchor=north west] {$e$};
\draw [color=ffqqqq](13.173333333333336,1.2133333333333316) node[anchor=north west] {$f$};
\draw (9.6,2.5) node[anchor=north west] {$\text{Pegar por } a$};
\end{tikzpicture}
%\definecolor{ffqqqq}{rgb}{1.,0.,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-0.3133333333333334,-1.9133333333333322) rectangle (15.02,3.8);
\fill[fill=black,fill opacity=0.09](4.,0.)-- (3.,0.)--(2.62,1.0066666666666673)--(2.,2.)--(3.,2.)--(3.993333333333334,2.18)--(4.98,1.78)--cycle;
\fill[fill=black,fill opacity=0.09](9.42,0.)--(8.38,0.)--(8.,1.)--(8.,2.)--(8.4,3)--(9.433333333333335,3.02)--(10,2)--cycle;
\draw [->] (0.,1.) -- (1.38,1.0066666666666673);
\draw (4.,0.)-- (3.,0.);
\draw (3.,0.)-- (2.62,1.0066666666666673);
\draw (2.62,1.0066666666666673)-- (2.,2.);
\draw (2.,2.)-- (3.,2.);
\draw (3.,2.)-- (3.993333333333334,2.18);
\draw (3.993333333333334,2.18)-- (4.98,1.78);
\draw [dash pattern=on 3pt off 3pt] (4.98,1.78)-- (4.,0.);
\draw [dotted] (2.62,1.0066666666666673)-- (3.,2.);
\draw (6,1.) node[anchor=north west] {\LARGE{$=$}};
\draw (8.,2.)-- (8.,1.);
\draw (8.,1.)-- (8.38,0.);
\draw (8.38,0.)-- (9.42,0.);
\draw (8.,2.)-- (8.433333333333335,3.006666666666667);
\draw (8.433333333333335,3.006666666666667)-- (9.433333333333335,3.02);
\draw (9.433333333333335,3.02)-- (10.,2.);
\draw [dash pattern=on 3pt off 3pt] (10.,2.)-- (9.42,0.);
\draw [->] (11.,1.) -- (12.593333333333335,0.9933333333333338);
\draw (10.8,1.5) node[anchor=north west] {$\text{cortar por }g$};
\draw (10.8,1.) node[anchor=north west] {$\text{pegar por }b$};
\draw [color=ffqqqq] (9.433333333333335,3.02)-- (8.38,0.);
\draw [->,color=ffqqqq] (9.433333333333335,3.02) -- (8.831965956041762,1.2958264435880833);
\draw [->,dotted] (2.62,1.0066666666666673) -- (2.8481194499017684,1.6029789129011138);
\draw [->] (3.,0.) -- (2.7941435700575816,0.5453389635316701);
\draw [->] (2.62,1.0066666666666673) -- (2.2809996758508913,1.5497962182604001);
\draw [->] (2.,2.) -- (2.5666666666666673,2.);
\draw [->] (3.,2.) -- (3.5603041139700546,2.101531617967728);
\draw [->] (4.98,1.78) -- (4.504926808866585,1.9725972396486822);
\draw [->] (4.,0.) -- (3.553333333333334,0.);
\draw [->] (9.42,0.) -- (8.793333333333335,0.);
\draw [->] (8.38,0.) -- (8.142162414074333,0.6258883840149126);
\draw [->] (8.,1.) -- (8.,1.486666666666667);
\draw [->] (8.,2.) -- (8.249465233438402,2.579526926910747);
\draw [->] (8.433333333333335,3.006666666666667) -- (9.011382113821139,3.0143739837398376);
\draw [->] (10.,2.) -- (9.740251572327045,2.46754716981132);
\draw (1.9133333333333338,1.6466666666666672) node[anchor=north west] {$f$};
\draw (2.353333333333334,0.753333333333334) node[anchor=north west] {$f$};
\draw (2.3,2.4) node[anchor=north west] {$e$};
\draw (3.233333333333334,2.62) node[anchor=north west] {$b$};
\draw (4.4733333333333345,2.4) node[anchor=north west] {$e$};
\draw (3.34,0.04666666666666742) node[anchor=north west] {$b$};
\draw (8.873333333333335,0.03333333333333408) node[anchor=north west] {$b$};
\draw (7.713333333333335,0.7266666666666672) node[anchor=north west] {$f$};
\draw (7.4733333333333345,1.82) node[anchor=north west] {$f$};
\draw (7.713333333333335,2.9) node[anchor=north west] {$e$};
\draw (8.7,3.54) node[anchor=north west] {$b$};
\draw (9.873333333333335,2.8333333333333335) node[anchor=north west] {$e$};
\draw [color=ffqqqq](9.,1.62) node[anchor=north west] {$g$};
\draw (2.8,1.6066666666666671) node[anchor=north west] {$c$};
\end{tikzpicture}
%\definecolor{ffqqqq}{rgb}{1.,0.,0.}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-0.5,-2.12) rectangle (14.38666666666667,3.5);
\fill[fill=black,fill opacity=0.09](1,0)--(0,0)--(0,1)--(0.34666666666666673,1.9733333333333323)--(1.2533333333333336,2.9733333333333314)--(2.28,2.9733333333333314)--(2.253333333333334,1.1866666666666659)--cycle;
\fill[fill=black,fill opacity=0.09](7.,0.)--(6,0)--(5.3066666666666675,0.9333333333333328)--(6,3)--(7,3)--(7.52,1.9733333333333323)--(7.52,1.0133333333333328)--cycle;
\fill[fill=black,fill opacity=0.09](12.7,0)--(11.58666666666667,0.)--(11,1)--(11,2)--(12.56,3.)--(13.,2.)--(13.,1.)--cycle;
\draw (1.,0.)-- (0.,0.);
\draw (0.,0.)-- (0.,1.);
\draw (0.,1.)-- (0.34666666666666673,1.9733333333333323);
\draw [dash pattern=on 3pt off 3pt] (0.34666666666666673,1.9733333333333323)-- (1.2533333333333336,2.9733333333333314);
\draw (1.2533333333333336,2.9733333333333314)-- (2.28,2.9733333333333314);
\draw (2.28,2.9733333333333314)-- (2.253333333333334,1.1866666666666659);
\draw (2.253333333333334,1.1866666666666659)-- (1.,0.);
\draw [dotted] (0.34666666666666673,1.9733333333333323)-- (2.253333333333334,1.1866666666666659);
\draw (3.5,1.6) node[anchor=north west] {\LARGE{$=$}};
\draw (8.2,1.6) node[anchor=north west] {$\text{pegar por }e$};
\draw (8.2,2.2) node[anchor=north west] {$\text{cortar por }h$};
\draw (5.3066666666666675,0.9333333333333328)-- (6.,0.);
\draw (6.,0.)-- (7.,0.);
\draw (7.,0.)-- (7.52,1.0133333333333328);
\draw (7.52,1.0133333333333328)-- (7.52,1.9733333333333323);
\draw (7.52,1.9733333333333323)-- (7.,3.);
\draw (7.,3.)-- (6.,3.);
\draw [dash pattern=on 3pt off 3pt] (6.,3.)-- (5.3066666666666675,0.9333333333333328);
\draw [color=ffqqqq] (6.,0.)-- (6.,3.);