-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
289 lines (241 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import gym
import random
import numpy as np
import time
import math
import os
import matplotlib.pyplot as plt
import yaml
import argparse
from copy import deepcopy
from algo.agents.wqmix import WQMIX_Agents
from configs.benchmark import BENCHMARK_ENV_CONFIG
from argparse import Namespace
from torch.utils.tensorboard import SummaryWriter
def process_obs(obs):
curr_pos = obs[:len(obs)//2]
target_pos = torch.argmax(torch.tensor(obs[len(obs)//2:])) / (len(obs)//2) # get normalized goal
curr_pos = torch.cat((torch.tensor(curr_pos), target_pos.view(1)))
return curr_pos
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def get_start_goal(map_name, drone_num, few_shot_chance=0.2):
"""
Randomly selects a start and goal configuration for a given map name and drone number.
If zero-shot training, set few_shot_chance to 0.0 => always pick random goal and start
"""
if random.random() > few_shot_chance:
return [], []
key = (map_name, drone_num)
if key in BENCHMARK_ENV_CONFIG:
positions = BENCHMARK_ENV_CONFIG[key]
if positions:
config = random.choice(positions)
return config['start'], config['goal']
return [], []
class Runner():
def __init__(self, args, env, reward_list):
# Set random seeds
set_seed(args.seed)
# Prepare directories
self.args = args
self.args.agent_name = args.agent
self.env = env
self.few_shot = args.few_shot
self.eval_interval = self.args.eval_interval
self.best_performance = None
self.reward_list = reward_list
# logging
folder_name = f"seed_{args.seed}_" + time.asctime().replace(" ", "").replace(":", "_")
self.args.model_dir = f"./models/wqmix/" + self.env.map_name + f"_drones{self.env.n_agents}"
self.args.model_dir_save = self.args.model_dir_load = self.args.model_dir
self.args.log_dir = f"./models/wqmix/" + self.env.map_name + f"_drones{self.env.n_agents}/logs/"
if (not os.path.exists(self.args.model_dir_save)) and (not self.args.test_mode):
os.makedirs(self.args.model_dir_save)
if self.args.logger == "tensorboard":
log_dir = os.path.join(self.args.log_dir, folder_name)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
self.writer = SummaryWriter(log_dir)
self.episode_length = self.env.time_limit
self.running_steps = args.running_steps
self.training_frequency = args.training_frequency
self.current_step = 0
self.env_step = 0
self.current_episode = 0
args.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.agents = WQMIX_Agents(self.env, args, args.device)
def log_infos(self, info: dict, x_index: int):
if x_index <= self.running_steps:
for k, v in info.items():
try:
self.writer.add_scalar(k, v, x_index)
except:
self.writer.add_scalars(k, v, x_index)
def get_actions(self, obs_n, avail_actions, *rnn_hidden, test_mode=False):
rnn_hidden_policy = rnn_hidden
rnn_hidden_next, actions_n = self.agents.act(obs_n, *rnn_hidden_policy,
avail_actions=avail_actions, test_mode=test_mode)
return {'actions_n': actions_n, 'rnn_hidden': rnn_hidden_next}
def get_avail_actions(self):
avail_actions = []
for i in range(self.env.n_agents):
avail_actions.append(self.env.get_avail_agent_actions(i, self.env.n_actions)[0])
avail_actions = torch.tensor(avail_actions, dtype=torch.int32)
return avail_actions
def benchmark(self, n_test_runs):
key = (self.env.map_name, self.env.n_agents)
if key in BENCHMARK_ENV_CONFIG:
positions = BENCHMARK_ENV_CONFIG[key]
else:
return
episode_scores = []
won_count = 0
for pos in positions:
for i in range(n_test_runs):
self.env.ee_env.input_start_ori_array, self.env.ee_env.input_goal_array = pos['start'], pos['goal']
run_score, won = self.run_episode(test_mode=True)
episode_scores.append(run_score)
if won:
won_count += 1
mean_loss = np.array(episode_scores).mean()
results_info = {"Test-Results/Mean-Episode-Loss": mean_loss,
"Test-Results/Win-Rate": won_count / len(episode_scores)}
self.log_infos(results_info, self.current_step)
if self.best_performance is None or mean_loss <= self.best_performance:
# print("Best benchmark performance, saving model at eps ", self.current_step, "| Win rate: ", won_count / len(episode_scores))
self.best_performance = mean_loss
self.agents.save_model("benchmark_model.pth")
def run_episode(self, test_mode):
if not test_mode:
if self.few_shot:
self.env.ee_env.input_start_ori_array, self.env.ee_env.input_goal_array = get_start_goal(map_name=self.env.map_name,
drone_num=self.env.n_agents,
few_shot_chance=0.2)
else:
self.env.ee_env.input_start_ori_array, self.env.ee_env.input_goal_array = [], []
obs_n = self.env.reset()
obs_n = np.array([process_obs(o) for o in obs_n])
done = False
filled = np.zeros([self.episode_length, 1], np.int32)
rnn_hidden = self.agents.policy.representation.init_hidden(self.agents.n_agents)
env_step = 0
episode_score = 0
if test_mode:
goal_step = [None] * self.agents.n_agents
goal_drones = 0
won_episode = False
while not done:
avail_actions = self.get_avail_actions()
actions_dict = self.get_actions(obs_n, avail_actions, *rnn_hidden, test_mode=test_mode)
actions_dict['actions_n'] = actions_dict['actions_n'].flatten()
next_obs_n, rew_n, terminated_n, infos = self.env.step(actions_dict['actions_n'])
next_obs_n = np.array([process_obs(o) for o in next_obs_n])
rnn_hidden = actions_dict['rnn_hidden']
if torch.any(torch.isnan(rnn_hidden[0])):
print("NAN RNN VALUE", rnn_hidden)
return
filled[env_step] = 1
done = all(terminated_n)
if not test_mode:
transition = (obs_n, actions_dict, obs_n.reshape(-1), rew_n, done, avail_actions)
self.agents.memory.store_transitions(env_step, *transition)
episode_score += np.mean(rew_n)
else: # benchmark scoring
for i in range(self.agents.n_agents):
if rew_n[i] == self.reward_list["goal"]: # goal
goal_drones += 1
goal_step[i] = infos["step"]
elif rew_n[i] == self.reward_list["collision"] * self.env.speed: # collision
if goal_step[i] == None:
goal_step[i] = 100
if done and not test_mode:
filled[env_step, 0] = 0
avail_actions = self.get_avail_actions()
terminal_data = (next_obs_n, next_obs_n.reshape(-1), avail_actions, filled)
self.agents.memory.finish_path(env_step + 1, *terminal_data)
# print(f"r:{rew_n},done:{terminated_n},info:{infos}")
env_step += 1
obs_n = deepcopy(next_obs_n)
if not test_mode:
self.agents.memory.store_episodes() # store episode data
train_info = self.agents.train(self.current_step) # train
for k in train_info.keys():
if math.isnan(train_info[k]):
print("NAN VALUE " + k, train_info[k]) # just to verify that there's no nan losses
break
episode_info = {"Train_Episode_Score": episode_score}
self.log_infos(episode_info, self.current_step)
self.log_infos(train_info, self.current_step)
else: # benchmark scoring
for i in range(self.agents.n_agents):
if goal_step[i] == None:
goal_step[i] = 100
episode_score = sum(goal_step)
won_episode = goal_drones == self.agents.n_agents
return episode_score, won_episode
return episode_score
def train(self, n_episodes):
for _ in range(n_episodes):
if self.current_step % self.eval_interval == 0:
self.benchmark(n_test_runs=20)
self.current_step += 1
self.run_episode(test_mode=False)
def run(self):
self.train(self.agents.n_episodes)
print("Finish training.")
self.agents.save_model("final_train_model.pth")
def finish(self):
self.env.close()
self.writer.close()
def parse_arguments():
parser = argparse.ArgumentParser(description='QMIX for DRP env')
parser.add_argument('--config', type=str, default='./qmix/drp_config.yaml', help='Path to YAML config for training QMIX on DRP env')
parser.add_argument('--drone_num', type=int, default=3, help='Number of drones')
parser.add_argument('--map_name', type=str, default='map_3x3', help='Name of the map')
args = parser.parse_args()
return args
def load_config(args):
with open(args.config, 'r') as file:
config_dict = yaml.safe_load(file)
config = Namespace(**config_dict)
return config
'''
Problem information
map_name |number of drone| number of problem
--------------------|---------------|-------------------
map_3x3 | 2 | 3
map_3x3 | 3 | 4
map_3x3 | 4 | 3
map_aoba01 | 4 | 3
map_aoba01 | 6 | 4
map_aoba01 | 8 | 3
map_shibuya | 8 | 3
map_shibuya | 10 | 4
map_shibuya | 12 | 3
'''
if __name__ == "__main__":
# make env
args = parse_arguments()
args.config = f"./configs/{args.map_name}_drones{args.drone_num}.yaml"
config = load_config(args)
reward_list = {
"goal": 100,
"collision": -20,
"wait": -0.2,
"move": -0.1,
}
env = gym.make(
"drp_env:drp-" + str(args.drone_num) + "agent_" + args.map_name + "-v2",
state_repre_flag="onehot_fov",
reward_list=reward_list,
)
config.few_shot = True # whether to include benchmarks in training envs
runner = Runner(config, env, reward_list)
runner.run()
runner.finish()