-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipline.py
55 lines (48 loc) · 2.22 KB
/
pipline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import subprocess
import os
def medical_prompt_generation():
# 获取当前脚本的路径
current_dir = os.path.dirname(os.path.realpath(__file__))
# 构建 medical prompt generation 脚本的路径
medical_script_path = os.path.join(current_dir, 'MedicalPromptGeneration/src', 'main.py')
# 调用 MedicalPromptGeneration 脚本
result = subprocess.run(['python', medical_script_path], capture_output=True, text=True)
if result.returncode == 0:
print("MedicalPromptGeneration Output:")
print(result.stdout)
else:
print("Error in MedicalPromptGeneration:", result.stderr)
def metric_text2text():
current_dir = os.path.dirname(os.path.realpath(__file__))
text2text_script_path = os.path.join(current_dir, 'metric/text2text.py')
# 调用文本相似性评估脚本
result = subprocess.run(['python', text2text_script_path], capture_output=True, text=True)
if result.returncode == 0:
print("Text-to-Text Similarity Output:")
print(result.stdout)
else:
print("Error in Text-to-Text Metric:", result.stderr)
def metric_text2image():
current_dir = os.path.dirname(os.path.realpath(__file__))
text2image_script_path = os.path.join(current_dir, 'metric/text2image.py')
# 调用图像文本相似性评估脚本
result = subprocess.run(['python', text2image_script_path], capture_output=True, text=True)
if result.returncode == 0:
print("Text-to-Image Similarity Output:")
print(result.stdout)
else:
print("Error in Text-to-Image Metric:", result.stderr)
def main():
parser = argparse.ArgumentParser(description="Run medical prompt generation or similarity metrics.")
parser.add_argument('command', choices=['medical', 'text2text', 'text2image'],
help='Choose a command to execute: "medical" for medical prompt generation, "text2text" for text similarity, "text2image" for text to image similarity.')
args = parser.parse_args()
if args.command == 'medical':
medical_prompt_generation()
elif args.command == 'text2text':
metric_text2text()
elif args.command == 'text2image':
metric_text2image()
if __name__ == "__main__":
main()