From 78f7bb16382149bc6d59fa79330bdf576dd8bbbf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jere=20Lepp=C3=A4nen?= Date: Tue, 11 Jun 2024 14:56:28 +0300 Subject: [PATCH] linux-dpdk: validation: ml: add validation tests MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Add validation tests for the new mldev based ML implementation. Signed-off-by: Jere Leppänen --- platform/linux-dpdk/m4/configure.m4 | 1 + platform/linux-dpdk/test/Makefile.am | 5 + .../test/validation/api/ml/.gitignore | 2 + .../test/validation/api/ml/Makefile.am | 33 + .../test/validation/api/ml/conv.onnx | Bin 0 -> 173 bytes .../test/validation/api/ml/conv_gen.py | 34 + .../test/validation/api/ml/conv_gen.sh | 17 + .../test/validation/api/ml/ml_dpdk.c | 1060 +++++++++++++++++ .../test/validation/api/ml/ml_dpdk.sh | 24 + 9 files changed, 1176 insertions(+) create mode 100644 platform/linux-dpdk/test/validation/api/ml/.gitignore create mode 100644 platform/linux-dpdk/test/validation/api/ml/Makefile.am create mode 100644 platform/linux-dpdk/test/validation/api/ml/conv.onnx create mode 100644 platform/linux-dpdk/test/validation/api/ml/conv_gen.py create mode 100755 platform/linux-dpdk/test/validation/api/ml/conv_gen.sh create mode 100644 platform/linux-dpdk/test/validation/api/ml/ml_dpdk.c create mode 100755 platform/linux-dpdk/test/validation/api/ml/ml_dpdk.sh diff --git a/platform/linux-dpdk/m4/configure.m4 b/platform/linux-dpdk/m4/configure.m4 index 03aa12412..bf14cb772 100644 --- a/platform/linux-dpdk/m4/configure.m4 +++ b/platform/linux-dpdk/m4/configure.m4 @@ -117,5 +117,6 @@ AC_CONFIG_FILES([platform/linux-dpdk/Makefile platform/linux-dpdk/test/example/switch/Makefile platform/linux-dpdk/test/performance/Makefile platform/linux-dpdk/test/performance/dmafwd/Makefile + platform/linux-dpdk/test/validation/api/ml/Makefile platform/linux-dpdk/test/validation/api/pktio/Makefile]) ]) diff --git a/platform/linux-dpdk/test/Makefile.am b/platform/linux-dpdk/test/Makefile.am index c210edbdc..0a4cf1c6c 100644 --- a/platform/linux-dpdk/test/Makefile.am +++ b/platform/linux-dpdk/test/Makefile.am @@ -18,6 +18,11 @@ test_SCRIPTS = $(dist_check_SCRIPTS) SUBDIRS += validation/api/pktio \ example \ performance + +if WITH_ML +SUBDIRS += validation/api/ml +endif + else #performance tests refer to pktio_env if test_perf diff --git a/platform/linux-dpdk/test/validation/api/ml/.gitignore b/platform/linux-dpdk/test/validation/api/ml/.gitignore new file mode 100644 index 000000000..01495e0c8 --- /dev/null +++ b/platform/linux-dpdk/test/validation/api/ml/.gitignore @@ -0,0 +1,2 @@ +ml_dpdk +conv.bin diff --git a/platform/linux-dpdk/test/validation/api/ml/Makefile.am b/platform/linux-dpdk/test/validation/api/ml/Makefile.am new file mode 100644 index 000000000..14bb88744 --- /dev/null +++ b/platform/linux-dpdk/test/validation/api/ml/Makefile.am @@ -0,0 +1,33 @@ +include ../Makefile.inc + +test_PROGRAMS = ml_dpdk +ml_dpdk_SOURCES = ml_dpdk.c + +dist_check_SCRIPTS = ml_dpdk.sh + +test_SCRIPTS = $(dist_check_SCRIPTS) + +TESTS = $(test_SCRIPTS) + +EXTRA_DIST = conv_gen.py conv.onnx + +# If building out-of-tree, make check will not copy the scripts and data to the +# $(builddir) assuming that all commands are run locally. However this prevents +# running tests on a remote target using LOG_COMPILER. +# So copy all script and data files explicitly here. +all-local: + if [ "x$(srcdir)" != "x$(builddir)" ]; then \ + for f in $(EXTRA_DIST); do \ + if [ -e $(srcdir)/$$f ]; then \ + mkdir -p $(builddir)/$$(dirname $$f); \ + cp -f $(srcdir)/$$f $(builddir)/$$f; \ + fi \ + done \ + fi + +clean-local: + if [ "x$(srcdir)" != "x$(builddir)" ]; then \ + for f in $(EXTRA_DIST); do \ + rm -f $(builddir)/$$f; \ + done \ + fi diff --git a/platform/linux-dpdk/test/validation/api/ml/conv.onnx b/platform/linux-dpdk/test/validation/api/ml/conv.onnx new file mode 100644 index 0000000000000000000000000000000000000000..7fc58c4476ed78f53f584431467f2e21524408dc GIT binary patch literal 173 zcmd5ckSU^l6t`MMB1^1%Ff($KT4n_zRU{qpZU|?`?VhoRx h25J@(;}YRu6cXTK;$TF=Oi4h=NL-RmEL;o%d;plf9y0&{ literal 0 HcmV?d00001 diff --git a/platform/linux-dpdk/test/validation/api/ml/conv_gen.py b/platform/linux-dpdk/test/validation/api/ml/conv_gen.py new file mode 100644 index 000000000..c3a57cf9d --- /dev/null +++ b/platform/linux-dpdk/test/validation/api/ml/conv_gen.py @@ -0,0 +1,34 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright (c) 2024 Nokia +# + +import onnx +from onnx import helper +from onnx import TensorProto + +graph = helper.make_graph( + [ # nodes + helper.make_node("Conv", ["X", "W"], ["Y"], "Conv Node"), + ], + "Test Graph", # name + [ # inputs + helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 1, 2]), + ], + [ # outputs + helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2]), + ], + [ # initializer + helper.make_tensor('W', TensorProto.FLOAT, [1, 1, 1, 1], [2.0]), + ], +) + +model = helper.make_model( + graph, + opset_imports=[helper.make_opsetid("", 14)], + producer_name='ODP validation tests', + model_version=1, + doc_string="output = 2 * input", + ir_version = 8 +) + +onnx.save(model, 'conv.onnx') diff --git a/platform/linux-dpdk/test/validation/api/ml/conv_gen.sh b/platform/linux-dpdk/test/validation/api/ml/conv_gen.sh new file mode 100755 index 000000000..c30ed6270 --- /dev/null +++ b/platform/linux-dpdk/test/validation/api/ml/conv_gen.sh @@ -0,0 +1,17 @@ +#!/bin/sh -ex +# +# SPDX-License-Identifier: BSD-3-Clause +# Copyright (c) 2024 Nokia + +# +# This script requires the onnx python module. The mrvl-mlc and mlModel tools +# are expected to be in PATH. These tools are x86-64 binaries, so this script +# must be run on an x86-64 machine. However, the test can only be run on a +# machine equipped with the Marvell machine learning inference processor (MLIP). +# + +python ./conv_gen.py +mrvl-mlc conv.onnx conv --num_tiles=1 --batch=1 +mv bin_conv/conv.bin . +rm -rf bin_conv compiler_dir profile +mlModel -M -m conv.bin diff --git a/platform/linux-dpdk/test/validation/api/ml/ml_dpdk.c b/platform/linux-dpdk/test/validation/api/ml/ml_dpdk.c new file mode 100644 index 000000000..3b8345e7d --- /dev/null +++ b/platform/linux-dpdk/test/validation/api/ml/ml_dpdk.c @@ -0,0 +1,1060 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright (c) 2024 Nokia + */ + +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + +#include +#include +#include +#include +#include +#include "odp_cunit_common.h" + +#define TIMEOUT 5 +#define MODEL_NAME "Test" +#define NUM_INPUTS 1 +#define NUM_OUTPUTS 1 +#define INP_ELEMS 2 +#define OUT_ELEMS 2 +#define NUM_BATCH 4 +#define RUN_NUM 2 +#define BUF_LEN 256 +#define CONFIG_MAX_MODEL_SIZE (1024 * 1024) + +#define COMPL_POOL_NAME "ML compl pool" +#define NUM_COMPL 10 + +typedef struct global_t { + int disabled; + odp_ml_capability_t ml_capa; + odp_ml_config_t ml_config; + odp_ml_model_param_t model_param; + odp_ml_model_t ml_model; + odp_pool_t compl_pool; + odp_queue_t queue; + odp_ml_data_t data; + odp_ml_data_seg_t input_seg; + odp_ml_data_seg_t output_seg; + uint64_t wait_ns; + float input[INP_ELEMS * NUM_BATCH]; + float output[OUT_ELEMS * NUM_BATCH]; + float reference[OUT_ELEMS * NUM_BATCH]; + uint16_t input_q[INP_ELEMS * NUM_BATCH]; + uint16_t output_q[OUT_ELEMS * NUM_BATCH]; + +} global_t; + +static global_t global; + +static int fill_model_param(const char *model_name, odp_ml_model_param_t *model_param) +{ + size_t size; + FILE *model_file; + + odp_ml_model_param_init(model_param); + + model_file = fopen(model_name, "rb"); + if (model_file == NULL) { + perror("Failed to open model file"); + return -1; + } + + /* Get the model file size in bytes */ + fseek(model_file, 0, SEEK_END); + model_param->size = ftell(model_file); + rewind(model_file); + + model_param->model = malloc(model_param->size); + if (!model_param->model) { + ODPH_ERR("\n\nMemory allocation failed\n"); + fclose(model_file); + return -1; + } + size = fread(model_param->model, model_param->size, 1, model_file); + + fclose(model_file); + if (size != 1) { + ODPH_ERR("\n\nRead model file failed\n"); + return -1; + } + + model_param->max_compl_id = 0; + + return 0; +} + +static int ml_suite_init(void) +{ + odp_ml_capability_t *ml_capa = &global.ml_capa; + odp_queue_param_t queue_param; + odp_ml_compl_pool_param_t ml_pool_param; + + global.queue = ODP_QUEUE_INVALID; + global.compl_pool = ODP_POOL_INVALID; + + if (odp_ml_capability(ml_capa)) { + ODPH_ERR("ML capability failed\n"); + return -1; + } + + if (ml_capa->max_models == 0) { + global.disabled = 1; + ODPH_DBG("ML test disabled\n"); + return 0; + } + + /* Configure ML */ + odp_ml_config_init(&global.ml_config); + global.ml_config.max_models_created = ml_capa->max_models; + global.ml_config.max_models_loaded = ml_capa->max_models_loaded; + global.ml_config.max_model_size = CONFIG_MAX_MODEL_SIZE; + + if (ml_capa->load.compl_mode_mask & ODP_ML_COMPL_MODE_SYNC) + global.ml_config.load_mode_mask |= ODP_ML_COMPL_MODE_SYNC; + + if (ml_capa->load.compl_mode_mask & ODP_ML_COMPL_MODE_POLL) + global.ml_config.load_mode_mask |= ODP_ML_COMPL_MODE_POLL; + + if (ml_capa->load.compl_mode_mask & ODP_ML_COMPL_MODE_EVENT) + global.ml_config.load_mode_mask |= ODP_ML_COMPL_MODE_EVENT; + + if (ml_capa->run.compl_mode_mask & ODP_ML_COMPL_MODE_SYNC) + global.ml_config.run_mode_mask |= ODP_ML_COMPL_MODE_SYNC; + + if (ml_capa->run.compl_mode_mask & ODP_ML_COMPL_MODE_POLL) + global.ml_config.run_mode_mask |= ODP_ML_COMPL_MODE_POLL; + + if (ml_capa->run.compl_mode_mask & ODP_ML_COMPL_MODE_EVENT) + global.ml_config.run_mode_mask |= ODP_ML_COMPL_MODE_EVENT; + + if (odp_ml_config(&global.ml_config)) { + ODPH_ERR("\n\nConfiguring ML failed\n"); + return -1; + } + + global.wait_ns = 500 * ODP_TIME_MSEC_IN_NS; + + /* Prepare input and reference. */ + + int num = INP_ELEMS * NUM_BATCH; + + for (int i = 0; i < num; i++) { + global.input[i] = i + 1; + global.reference[i] = global.input[i] * 2; + } + + odp_ml_fp32_to_fp16(global.input_q, global.input, num); + + /* Set up segments. */ + + global.data.num_input_seg = NUM_INPUTS; + global.data.input_seg = &global.input_seg; + global.input_seg.addr = &global.input_q; + + global.data.num_output_seg = NUM_OUTPUTS; + global.data.output_seg = &global.output_seg; + global.output_seg.addr = &global.output_q; + + /* Create ML model */ + global.ml_model = odp_ml_model_create(MODEL_NAME, &global.model_param); + if (global.ml_model == ODP_ML_MODEL_INVALID) { + ODPH_ERR("Create ML model failed\n"); + goto error; + } + + /* Asynchronous mode with event completion is not supported */ + if (!((ml_capa->load.compl_mode_mask & ODP_ML_COMPL_MODE_EVENT) || + (ml_capa->run.compl_mode_mask & ODP_ML_COMPL_MODE_EVENT))) + return 0; + + /* Create a queue for sending ML completion event to */ + odp_queue_param_init(&queue_param); + queue_param.type = ODP_QUEUE_TYPE_SCHED; + queue_param.sched.sync = ODP_SCHED_SYNC_PARALLEL; + queue_param.sched.prio = odp_schedule_default_prio(); + queue_param.sched.group = ODP_SCHED_GROUP_ALL; + + global.queue = odp_queue_create("ML compl queue", &queue_param); + if (global.queue == ODP_QUEUE_INVALID) { + ODPH_ERR("Queue create failed\n"); + goto error; + } + + /* Create an ML job completion pool */ + if (ml_capa->pool.max_num < NUM_COMPL) { + ODPH_ERR("Too small ML compl pool %u\n", ml_capa->pool.max_num); + goto error; + } + + odp_ml_compl_pool_param_init(&ml_pool_param); + ml_pool_param.num = NUM_COMPL; + + global.compl_pool = odp_ml_compl_pool_create(COMPL_POOL_NAME, &ml_pool_param); + if (global.compl_pool == ODP_POOL_INVALID) { + ODPH_ERR("Create ML completion pool failed\n"); + goto error; + } + + return 0; + +error: + free(global.model_param.model); + return -1; +} + +static int ml_suite_term(void) +{ + if (global.compl_pool != ODP_POOL_INVALID && odp_pool_destroy(global.compl_pool)) { + ODPH_ERR("Completion pool destroy failed\n"); + return -1; + } + + if (global.ml_model && odp_ml_model_destroy(global.ml_model)) { + ODPH_ERR("Destroy ML model failed\n"); + return -1; + } + + if (global.queue != ODP_QUEUE_INVALID && odp_queue_destroy(global.queue)) { + ODPH_ERR("Destroy ML queue failed\n"); + return -1; + } + + free(global.model_param.model); + + return 0; +} + +static int check_ml_support(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + return ODP_TEST_ACTIVE; +} + +static int check_load_sync(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + if (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_SYNC) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static int check_load_poll(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + if (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_POLL) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static int check_load_event(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + if (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_EVENT) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static int check_run_sync(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + /* Model run test uses synchronous load */ + if ((global.ml_config.run_mode_mask & ODP_ML_COMPL_MODE_SYNC) && + (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_SYNC)) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static int check_run_poll(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + /* Poll mode model run test uses synchronous load */ + if ((global.ml_config.run_mode_mask & ODP_ML_COMPL_MODE_POLL) && + (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_SYNC)) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static int check_run_event(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + /* Poll mode model run test uses synchronous load */ + if ((global.ml_config.run_mode_mask & ODP_ML_COMPL_MODE_EVENT) && + (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_SYNC)) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static int check_run_poll_event(void) +{ + if (global.disabled) + return ODP_TEST_INACTIVE; + + /* test_ml_run_start_multi uses synchronous load, poll mode and event mode run */ + if ((global.ml_config.run_mode_mask & ODP_ML_COMPL_MODE_EVENT) && + (global.ml_config.run_mode_mask & ODP_ML_COMPL_MODE_POLL) && + (global.ml_config.load_mode_mask & ODP_ML_COMPL_MODE_SYNC)) + return ODP_TEST_ACTIVE; + + return ODP_TEST_INACTIVE; +} + +static void test_ml_debug(void) +{ + uint64_t u64; + + u64 = odp_ml_model_to_u64(global.ml_model); + CU_ASSERT(u64 != odp_ml_model_to_u64(ODP_ML_MODEL_INVALID)); + printf("\n ML model handle: 0x%" PRIx64 "\n", u64); + + odp_ml_model_print(global.ml_model); +} + +static void test_ml_model_create(void) +{ + uint32_t i; + /* One for global.ml_model */ + uint32_t max_models = global.ml_config.max_models_created - 1; + odp_ml_model_t models[max_models]; + + for (i = 0; i < max_models; i++) { + models[i] = odp_ml_model_create(NULL, &global.model_param); + + if (models[i] == ODP_ML_MODEL_INVALID) { + ODPH_ERR("ML model create failed: %u / %u\n", i, max_models); + break; + } + } + + CU_ASSERT(i == max_models); + max_models = i; + + /* Destroy valid models */ + for (i = 0; i < max_models; i++) + CU_ASSERT_FATAL(odp_ml_model_destroy(models[i]) == 0); +} + +static void test_ml_model_lookup(void) +{ + odp_ml_model_t model2; + odp_ml_model_t model_lookup; + + /* Look up model with the same name, should find one with equal handle */ + model_lookup = odp_ml_model_lookup(MODEL_NAME); + CU_ASSERT_FATAL(model_lookup != ODP_ML_MODEL_INVALID); + CU_ASSERT(odp_ml_model_to_u64(global.ml_model) == odp_ml_model_to_u64(model_lookup)); + + /* Look up model with a different name, should return invalid handle */ + model_lookup = odp_ml_model_lookup("diff"); + CU_ASSERT_FATAL(model_lookup == ODP_ML_MODEL_INVALID); + + model2 = odp_ml_model_create(MODEL_NAME, &global.model_param); + CU_ASSERT_FATAL(model2 != ODP_ML_MODEL_INVALID); + CU_ASSERT(odp_ml_model_to_u64(global.ml_model) != odp_ml_model_to_u64(model2)); + + model_lookup = odp_ml_model_lookup(MODEL_NAME); + CU_ASSERT(odp_ml_model_to_u64(model_lookup) == odp_ml_model_to_u64(global.ml_model) || + odp_ml_model_to_u64(model_lookup) == odp_ml_model_to_u64(model2)); + + CU_ASSERT(odp_ml_model_destroy(model2) == 0); +} + +static void test_ml_model_info(void) +{ + int ret; + uint32_t num_ret; + odp_ml_model_info_t ml_info; + odp_ml_input_info_t input_info[2]; + odp_ml_output_info_t output_info[2]; + + memset(&ml_info, 0x88, sizeof(odp_ml_model_info_t)); + ret = odp_ml_model_info(global.ml_model, &ml_info); + CU_ASSERT(ret == 0); + CU_ASSERT(!strcmp(ml_info.name, MODEL_NAME)); + CU_ASSERT(ml_info.num_inputs == NUM_INPUTS); + CU_ASSERT(ml_info.num_outputs == NUM_OUTPUTS); + + num_ret = odp_ml_model_input_info(global.ml_model, input_info, NUM_INPUTS); + CU_ASSERT(num_ret == NUM_INPUTS); + CU_ASSERT(!strcmp(input_info[0].name, "single_input")); + CU_ASSERT(input_info[0].shape.num_dim == 4); + CU_ASSERT(input_info[0].shape.dim[0] == ODP_ML_DIM_DYNAMIC); + CU_ASSERT(input_info[0].shape.dim[1] == 1); + CU_ASSERT(input_info[0].shape.dim[2] == 1); + CU_ASSERT(input_info[0].shape.dim[3] == INP_ELEMS); + CU_ASSERT((int)input_info[0].data_type == ODP_ML_DATA_TYPE_FP16); + + /* When num is 0, return normally, and input_info is ignored */ + num_ret = odp_ml_model_input_info(global.ml_model, input_info, 0); + CU_ASSERT(num_ret == NUM_INPUTS); + + /* When num is bigger than actual number of inputs, extra input_info is left untouched */ + input_info[1].data_type = (odp_ml_data_type_t)-1; + num_ret = odp_ml_model_input_info(global.ml_model, input_info, NUM_INPUTS + 1); + CU_ASSERT(num_ret == NUM_INPUTS); + CU_ASSERT(!strcmp(input_info[0].name, "single_input")); + CU_ASSERT(input_info[0].shape.num_dim == 4); + CU_ASSERT(input_info[0].shape.dim[0] == ODP_ML_DIM_DYNAMIC); + CU_ASSERT(input_info[0].shape.dim[1] == 1); + CU_ASSERT(input_info[0].shape.dim[2] == 1); + CU_ASSERT(input_info[0].shape.dim[3] == INP_ELEMS); + CU_ASSERT((int)input_info[0].data_type == ODP_ML_DATA_TYPE_FP16); + /* input_info[1] is left untouched */ + CU_ASSERT(input_info[1].data_type == (odp_ml_data_type_t)-1); + + num_ret = odp_ml_model_output_info(global.ml_model, output_info, NUM_OUTPUTS); + CU_ASSERT(num_ret == NUM_OUTPUTS); + CU_ASSERT(!strcmp(output_info[0].name, "Y")); + CU_ASSERT(output_info[0].shape.num_dim == 1); + CU_ASSERT(output_info[0].shape.dim[0] == OUT_ELEMS); + CU_ASSERT((int)output_info[0].data_type == ODP_ML_DATA_TYPE_FP16); + + /* When num is 0, return normally, and input_info is ignored */ + num_ret = odp_ml_model_output_info(global.ml_model, output_info, 0); + CU_ASSERT(num_ret == NUM_OUTPUTS); + + /* When num is bigger than actual number of inputs, extra output_info is left untouched */ + num_ret = odp_ml_model_output_info(global.ml_model, output_info, NUM_OUTPUTS + 1); + output_info[1].shape.num_dim = 98876; + CU_ASSERT(num_ret == NUM_OUTPUTS); + CU_ASSERT(!strcmp(output_info[0].name, "Y")); + CU_ASSERT(output_info[0].shape.num_dim == 1); + CU_ASSERT(output_info[0].shape.dim[0] == OUT_ELEMS); + CU_ASSERT((int)output_info[0].data_type == ODP_ML_DATA_TYPE_FP16); + /* output_info[1] is left untouched */ + CU_ASSERT(output_info[1].shape.num_dim == 98876); +} + +static void test_ml_model_load(void) +{ + int ret; + odp_ml_model_t test_model; + odp_ml_load_result_t result; + + test_model = odp_ml_model_create(NULL, &global.model_param); + CU_ASSERT_FATAL(test_model != ODP_ML_MODEL_INVALID); + + ret = odp_ml_model_load(test_model, &result); + CU_ASSERT(ret == 0); + CU_ASSERT(result.error_code == 0); + + ret = odp_ml_model_unload(test_model, NULL); + CU_ASSERT(ret == 0); + + CU_ASSERT(odp_ml_model_destroy(test_model) == 0); +} + +/* Test asynchronous model loading in ODP_ML_COMPL_MODE_POLL mode */ +static void test_ml_model_load_async_poll(void) +{ + int ret; + odp_ml_load_result_t result; + odp_ml_compl_param_t compl_param; + int dummy = 6; + void *user_ptr = &dummy; + uint64_t wait_ns = 500 * ODP_TIME_MSEC_IN_NS; + + memset(&result, 0, sizeof(result)); + odp_ml_compl_param_init(&compl_param); + compl_param.mode = ODP_ML_COMPL_MODE_POLL; + compl_param.compl_id = 0; + compl_param.user_ptr = user_ptr; + + ret = odp_ml_model_load_start(global.ml_model, &compl_param); + CU_ASSERT_FATAL(ret == 0); + + /* When odp_ml_model_load_start() succeeded, continue to check completion status */ + for (int i = 0; i < TIMEOUT; i++) { + ret = odp_ml_model_load_status(global.ml_model, 0, &result); + if (ret) + break; + + /* ret = 0 meaning run has not finished, continue to check status */ + odp_time_wait_ns(wait_ns); + } + + CU_ASSERT(ret > 0); + CU_ASSERT(result.error_code == 0); + CU_ASSERT(result.user_ptr == user_ptr); + /* odp_ml_model_load does not modify data in user_ptr */ + if (result.user_ptr) + CU_ASSERT(*(int *)result.user_ptr == dummy); + + ret = odp_ml_model_unload_start(global.ml_model, &compl_param); + CU_ASSERT_FATAL(ret == 0); + + /* When odp_ml_model_unload_start() succeeded, continue to check completion + * status */ + for (int i = 0; i < TIMEOUT; i++) { + ret = odp_ml_model_unload_status(global.ml_model, 0, &result); + if (ret) + break; + + /* ret = 0 meaning run has not finished, continue to check status */ + odp_time_wait_ns(wait_ns); + } + + CU_ASSERT_FATAL(ret > 0); + CU_ASSERT(result.error_code == 0); + CU_ASSERT(result.user_ptr == user_ptr); + + /* odp_ml_model_unload does not modify data in user_ptr */ + if (result.user_ptr) + CU_ASSERT(*(int *)result.user_ptr == dummy); +} + +static int get_result_from_ml_compl_event(odp_ml_load_result_t *load_result, + odp_ml_run_result_t *run_result) +{ + int ret; + odp_event_t ev; + odp_ml_compl_t compl; + odp_event_type_t ev_type; + odp_queue_t from_queue = ODP_QUEUE_INVALID; + uint64_t sched_wait = odp_schedule_wait_time(global.wait_ns); + + /* Run event scheduler to find the ml completion event */ + for (int i = 0; i < TIMEOUT; i++) { + ev = odp_schedule(&from_queue, sched_wait); + if (ev != ODP_EVENT_INVALID) + break; + } + + CU_ASSERT(ev != ODP_EVENT_INVALID); + if (ev == ODP_EVENT_INVALID) { + ODPH_ERR("Timeout while waiting for completion event\n"); + return -1; + } + + ev_type = odp_event_type(ev); + CU_ASSERT(from_queue == global.queue); + CU_ASSERT(ev_type == ODP_EVENT_ML_COMPL); + if (from_queue != global.queue || ev_type != ODP_EVENT_ML_COMPL) { + odp_event_free(ev); + ODPH_ERR("Received unexpected event while waiting for completion\n"); + return -1; + } + + compl = odp_ml_compl_from_event(ev); + CU_ASSERT(compl != ODP_ML_COMPL_INVALID); + + if (load_result) { + CU_ASSERT(odp_ml_compl_load_result(compl, NULL) == 0); + ret = odp_ml_compl_load_result(compl, load_result); + } else { + CU_ASSERT(odp_ml_compl_run_result(compl, NULL) == 0); + ret = odp_ml_compl_run_result(compl, run_result); + } + + CU_ASSERT(ret == 0); + odp_ml_compl_free(compl); + + return ret; +} + +/* Test asynchronous model loading in ODP_ML_COMPL_MODE_EVENT mode */ +static void test_ml_model_load_async_event(void) +{ + int ret; + odp_ml_compl_t compl; + odp_ml_load_result_t result; + odp_ml_compl_param_t compl_param; + int dummy = 6; + void *user_ptr = &dummy; + + compl = odp_ml_compl_alloc(global.compl_pool); + CU_ASSERT_FATAL(compl != ODP_ML_COMPL_INVALID); + + odp_ml_compl_param_init(&compl_param); + compl_param.mode = ODP_ML_COMPL_MODE_EVENT; + compl_param.event = odp_ml_compl_to_event(compl); + compl_param.queue = global.queue; + compl_param.user_ptr = user_ptr; + + ret = odp_ml_model_load_start(global.ml_model, &compl_param); + CU_ASSERT(ret == 0); + + /* Return when odp_ml_model_load_start() failed */ + if (ret) { + odp_ml_compl_free(compl); + ODPH_ERR("ML model odp_ml_model_load_start() failed\n"); + return; + } + + /* Run event scheduler to find the ml completion event and verify it */ + if (get_result_from_ml_compl_event(&result, NULL)) + return; + + CU_ASSERT(result.error_code == 0); + CU_ASSERT(result.user_ptr == user_ptr); + + /* Model load does not modify data in user_ptr */ + if (result.user_ptr) + CU_ASSERT(*(int *)result.user_ptr == dummy); + + compl = odp_ml_compl_alloc(global.compl_pool); + CU_ASSERT(compl != ODP_ML_COMPL_INVALID); + + if (compl == ODP_ML_COMPL_INVALID) + return; + + compl_param.event = odp_ml_compl_to_event(compl); + ret = odp_ml_model_unload_start(global.ml_model, &compl_param); + CU_ASSERT_FATAL(ret == 0); + + /* Run event scheduler to find the ml completion event and verify it */ + if (get_result_from_ml_compl_event(&result, NULL)) + return; + + CU_ASSERT(result.error_code == 0); + CU_ASSERT(result.user_ptr == user_ptr); + + /* odp_ml_model_unload does not modify data in user_ptr */ + if (result.user_ptr) + CU_ASSERT(*(int *)result.user_ptr == dummy); +} + +static void clear_output(void) +{ + memset(global.output, 0, sizeof(global.output)); +} + +static void dequantize_output(int num_inference) +{ + odp_ml_fp32_from_fp16(global.output, global.output_q, OUT_ELEMS * num_inference); +} + +static int check_reference(int num_inference) +{ + int i; + + for (i = 0; i < OUT_ELEMS * num_inference; i++) { + if (fabs(global.output[i] - global.reference[i]) / global.reference[i] > 0.01) + return -1; + } + + return 0; +} + +static void test_ml_run_batch(int num_batch) +{ + int ret = 0; + odp_ml_run_result_t result; + odp_ml_run_param_t run_param; + + ret = odp_ml_model_load(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); + + /* Prepare data for running model inference */ + odp_ml_run_param_init(&run_param); + + run_param.batch_size = num_batch; + run_param.result = &result; + global.input_seg.size = num_batch * INP_ELEMS * sizeof(uint16_t); + global.output_seg.size = OUT_ELEMS * sizeof(uint16_t); + clear_output(); + + ret = odp_ml_run(global.ml_model, &global.data, &run_param); + CU_ASSERT(ret == 1); + CU_ASSERT(!result.error_code); + + dequantize_output(1); + CU_ASSERT(!check_reference(1)); + + ret = odp_ml_model_unload(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); +} + +static void test_ml_run(void) +{ + test_ml_run_batch(1); +} + +static void test_ml_run_batch4(void) +{ + test_ml_run_batch(4); +} + +static void test_ml_run_multi(void) +{ + int ret; + odp_ml_data_t data[RUN_NUM]; + odp_ml_data_seg_t input_seg[RUN_NUM]; + odp_ml_data_seg_t output_seg[RUN_NUM]; + odp_ml_run_param_t param[RUN_NUM]; + odp_ml_run_result_t result[RUN_NUM]; + uint64_t wait_ns = 500 * ODP_TIME_MSEC_IN_NS; + + ret = odp_ml_model_load(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); + + odp_ml_run_param_init(¶m[0]); + param[0].batch_size = 1; + param[0].result = &result[0]; + odp_ml_run_param_init(¶m[1]); + param[1].batch_size = 1; + param[1].result = &result[1]; + + /* Prepare data for running model inference */ + + data[0].num_input_seg = NUM_INPUTS; + data[0].input_seg = &input_seg[0]; + input_seg[0].size = INP_ELEMS * sizeof(int16_t); + input_seg[0].addr = &(global.input_q[0]); + + data[0].num_output_seg = NUM_OUTPUTS; + data[0].output_seg = &output_seg[0]; + output_seg[0].size = OUT_ELEMS * sizeof(int16_t); + output_seg[0].addr = &(global.output_q[0]); + + data[1].num_input_seg = NUM_INPUTS; + data[1].input_seg = &input_seg[1]; + input_seg[1].size = INP_ELEMS * sizeof(int16_t); + input_seg[1].addr = &(global.input_q[INP_ELEMS]); + + data[1].num_output_seg = NUM_OUTPUTS; + data[1].output_seg = &output_seg[1]; + output_seg[1].size = OUT_ELEMS * sizeof(int16_t); + output_seg[1].addr = &(global.output_q[OUT_ELEMS]); + + clear_output(); + + int num_completed = 0; + + for (int i = 0; i < TIMEOUT; i++) { + ret = odp_ml_run_multi(global.ml_model, data + num_completed, param + num_completed, + RUN_NUM - num_completed); + CU_ASSERT(ret >= 0); + if (ret < 0) + break; + + num_completed += ret; + + if (num_completed >= RUN_NUM) + break; + + odp_time_wait_ns(wait_ns); + } + + CU_ASSERT(num_completed == RUN_NUM); + CU_ASSERT(!result[0].error_code); + CU_ASSERT(!result[1].error_code); + dequantize_output(RUN_NUM); + CU_ASSERT(!check_reference(RUN_NUM)); + + ret = odp_ml_model_unload(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); +} + +/* Test asynchronous inference running in ODP_ML_COMPL_MODE_EVENT mode */ +static void test_ml_model_run_async_event(void) +{ + int ret; + void *user_ptr; + odp_ml_compl_t compl; + odp_ml_run_result_t result; + odp_ml_compl_param_t compl_param; + odp_ml_run_param_t param; + + /* Load model in order to run inference */ + ret = odp_ml_model_load(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); + + compl = odp_ml_compl_alloc(global.compl_pool); + CU_ASSERT_FATAL(compl != ODP_ML_COMPL_INVALID); + + odp_ml_compl_param_init(&compl_param); + compl_param.mode = ODP_ML_COMPL_MODE_EVENT; + compl_param.event = odp_ml_compl_to_event(compl); + compl_param.queue = global.queue; + + odp_ml_run_param_init(¶m); + param.batch_size = 1; + + /* user_ptr structure maintains the output data pointer for output retrieval */ + user_ptr = &global.output_seg; + compl_param.user_ptr = user_ptr; + + global.input_seg.size = INP_ELEMS * sizeof(uint16_t); + global.output_seg.size = OUT_ELEMS * sizeof(uint16_t); + + clear_output(); + + ret = odp_ml_run_start(global.ml_model, &global.data, &compl_param, ¶m); + CU_ASSERT_FATAL(ret == 1); + + /* Run event scheduler to find the ml completion event and verify it */ + if (get_result_from_ml_compl_event(NULL, &result)) + return; + + CU_ASSERT(!result.error_code); + CU_ASSERT(result.user_ptr == user_ptr); + dequantize_output(1); + CU_ASSERT(!check_reference(1)); + + /* Unload model */ + ret = odp_ml_model_unload(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); +} + +/* Test asynchronous inference running in ODP_ML_COMPL_MODE_POLL mode */ +static void test_ml_model_run_async_poll(void) +{ + int ret; + void *user_ptr; + odp_ml_run_result_t result; + odp_ml_compl_param_t compl_param; + odp_ml_run_param_t param; + uint64_t wait_ns = 500 * ODP_TIME_MSEC_IN_NS; + + memset(&result, 0, sizeof(result)); + /* Load model in order to run inference */ + ret = odp_ml_model_load(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); + + odp_ml_compl_param_init(&compl_param); + compl_param.mode = ODP_ML_COMPL_MODE_POLL; + compl_param.compl_id = 0; + + odp_ml_run_param_init(¶m); + param.batch_size = 1; + + /* user_ptr structure maintains the output data pointer for output retrieval */ + user_ptr = &global.output_seg; + compl_param.user_ptr = user_ptr; + + global.input_seg.size = INP_ELEMS * sizeof(uint16_t); + global.output_seg.size = OUT_ELEMS * sizeof(uint16_t); + + clear_output(); + + ret = odp_ml_run_start(global.ml_model, &global.data, &compl_param, ¶m); + CU_ASSERT_FATAL(ret == 1); + + /* When odp_ml_run_start() succeeded, continue to check completion status */ + for (int i = 0; i < TIMEOUT; i++) { + ret = odp_ml_run_status(global.ml_model, 0, &result); + if (ret) + break; + + /* ret = 0 meaning run has not finished, continue to check status */ + odp_time_wait_ns(wait_ns); + } + + CU_ASSERT(ret > 0); + CU_ASSERT(!result.error_code); + CU_ASSERT(result.user_ptr == user_ptr); + dequantize_output(1); + CU_ASSERT(!check_reference(1)); + + /* Unload model */ + ret = odp_ml_model_unload(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); +} + +static void test_ml_run_start_multi(void) +{ + int ret; + odp_ml_compl_t compl; + odp_ml_data_t data[RUN_NUM]; + odp_ml_data_seg_t input_seg[RUN_NUM]; + odp_ml_data_seg_t output_seg[RUN_NUM]; + odp_ml_compl_param_t compl_param[RUN_NUM]; + odp_ml_run_param_t param[RUN_NUM]; + odp_ml_run_result_t run_result[RUN_NUM]; + uint64_t wait_ns = 500 * ODP_TIME_MSEC_IN_NS; + + /* Load model in order to run inference */ + ret = odp_ml_model_load(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); + + compl = odp_ml_compl_alloc(global.compl_pool); + CU_ASSERT_FATAL(compl != ODP_ML_COMPL_INVALID); + + /* Prepare data for running model inference */ + + data[0].num_input_seg = NUM_INPUTS; + data[0].input_seg = &input_seg[0]; + input_seg[0].size = INP_ELEMS * sizeof(int16_t); + input_seg[0].addr = &(global.input_q[0]); + + data[0].num_output_seg = NUM_OUTPUTS; + data[0].output_seg = &output_seg[0]; + output_seg[0].size = OUT_ELEMS * sizeof(int16_t); + output_seg[0].addr = &(global.output_q[0]); + + data[1].num_input_seg = NUM_INPUTS; + data[1].input_seg = &input_seg[1]; + input_seg[1].size = INP_ELEMS * sizeof(int16_t); + input_seg[1].addr = &(global.input_q[INP_ELEMS]); + + data[1].num_output_seg = NUM_OUTPUTS; + data[1].output_seg = &output_seg[1]; + output_seg[1].size = OUT_ELEMS * sizeof(int16_t); + output_seg[1].addr = &(global.output_q[OUT_ELEMS]); + + clear_output(); + + /* Two completion parameters: one use event mode, another poll mode */ + odp_ml_compl_param_init(&compl_param[0]); + compl_param[0].mode = ODP_ML_COMPL_MODE_EVENT; + compl_param[0].event = odp_ml_compl_to_event(compl); + compl_param[0].queue = global.queue; + /* user_ptr structure maintains the output data pointer for output retrieval */ + compl_param[0].user_ptr = &output_seg[0]; + + odp_ml_compl_param_init(&compl_param[1]); + compl_param[1].mode = ODP_ML_COMPL_MODE_POLL; + compl_param[1].compl_id = 0; + /* user_ptr structure maintains the output data pointer for output retrieval */ + compl_param[1].user_ptr = &output_seg[1]; + + odp_ml_run_param_init(¶m[0]); + param[0].batch_size = 1; + + odp_ml_run_param_init(¶m[1]); + param[1].batch_size = 1; + + clear_output(); + + int num_completed = 0; + + for (int i = 0; i < TIMEOUT; i++) { + ret = odp_ml_run_start_multi(global.ml_model, data + num_completed, + compl_param + num_completed, param + num_completed, + RUN_NUM - num_completed); + CU_ASSERT(ret >= 0); + if (ret < 0) + break; + + num_completed += ret; + + if (num_completed >= RUN_NUM) + break; + + odp_time_wait_ns(wait_ns); + } + + CU_ASSERT(num_completed == RUN_NUM); + + /* Run event scheduler to find the ml completion event and verify it */ + if (get_result_from_ml_compl_event(NULL, &run_result[0])) { + ret = odp_ml_model_unload(global.ml_model, NULL); + return; + } + + CU_ASSERT(!run_result[0].error_code); + CU_ASSERT(run_result[0].user_ptr == &output_seg[0]); + + /* Check completion status for the poll mode */ + for (int i = 0; i < TIMEOUT; i++) { + ret = odp_ml_run_status(global.ml_model, 0, &run_result[1]); + if (ret) + break; + + /* ret = 0 meaning run has not finished, continue to check status */ + odp_time_wait_ns(wait_ns); + } + + CU_ASSERT(ret > 0); + CU_ASSERT(!run_result[1].error_code); + CU_ASSERT(run_result[1].user_ptr == &output_seg[1]); + dequantize_output(RUN_NUM); + CU_ASSERT(!check_reference(RUN_NUM)); + + /* Unload model */ + ret = odp_ml_model_unload(global.ml_model, NULL); + CU_ASSERT_FATAL(ret == 0); +} + +static void test_ml_model_extra_stats(void) +{ + int num = odp_ml_model_extra_stat_info(global.ml_model, NULL, 0); + + CU_ASSERT(num >= 0); + CU_ASSERT(odp_ml_model_extra_stats(global.ml_model, NULL, 0) == num); + + if (num > 0) { + odp_ml_extra_stat_info_t xinfo[num]; + uint64_t xstats[num]; + + CU_ASSERT(odp_ml_model_extra_stat_info(global.ml_model, xinfo, num) == num); + CU_ASSERT(odp_ml_model_extra_stats(global.ml_model, xstats, num) == num); + + printf(" Extra stats\n"); + for (int i = 0; i < num; i++) + printf(" %s: %" PRIu64 "\n", xinfo[i].name, xstats[i]); + } +} + +odp_testinfo_t ml_suite[] = { + ODP_TEST_INFO_CONDITIONAL(test_ml_model_create, check_ml_support), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_lookup, check_ml_support), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_info, check_ml_support), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_load, check_load_sync), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_load_async_poll, check_load_poll), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_load_async_event, check_load_event), + /* Synchronous load/unload is used load/unload model before/after model run */ + ODP_TEST_INFO_CONDITIONAL(test_ml_run, check_run_sync), + ODP_TEST_INFO_CONDITIONAL(test_ml_run_batch4, check_run_sync), + ODP_TEST_INFO_CONDITIONAL(test_ml_run_multi, check_run_sync), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_run_async_event, check_run_event), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_run_async_poll, check_run_poll), + ODP_TEST_INFO_CONDITIONAL(test_ml_run_start_multi, check_run_poll_event), + ODP_TEST_INFO_CONDITIONAL(test_ml_debug, check_ml_support), + ODP_TEST_INFO_CONDITIONAL(test_ml_model_extra_stats, check_ml_support), + ODP_TEST_INFO_NULL +}; + +odp_suiteinfo_t ml_suites[] = { + {"ML", ml_suite_init, ml_suite_term, ml_suite}, + ODP_SUITE_INFO_NULL +}; + +int main(int argc, char *argv[]) +{ + int ret; + + /* parse common options: */ + if (odp_cunit_parse_options(&argc, argv)) + return -1; + + ret = odp_cunit_register(ml_suites); + + if (argc < 2) { + ODPH_ERR("Model file name is not provided\n"); + return -1; + } + + memset(&global, 0, sizeof(global_t)); + + if (fill_model_param(argv[1], &global.model_param)) + return -1; + + if (ret == 0) + ret = odp_cunit_run(); + + return ret; +} diff --git a/platform/linux-dpdk/test/validation/api/ml/ml_dpdk.sh b/platform/linux-dpdk/test/validation/api/ml/ml_dpdk.sh new file mode 100755 index 000000000..6b7190f5c --- /dev/null +++ b/platform/linux-dpdk/test/validation/api/ml/ml_dpdk.sh @@ -0,0 +1,24 @@ +#!/bin/sh +# +# SPDX-License-Identifier: BSD-3-Clause +# Copyright (c) 2024 Nokia + +TEST_DIR="${TEST_DIR:-$(dirname $0)}" +MODEL_FILE=$TEST_DIR/conv.bin + +# exit codes expected by automake for skipped tests +TEST_SKIPPED=77 + +if [ ! -e "$MODEL_FILE" ]; then + echo "SKIP: ML model file ($MODEL_FILE) not found" + exit $TEST_SKIPPED +fi + +$TEST_DIR/ml_dpdk $MODEL_FILE + +if [ $? -ne 0 ] ; then + echo Test FAILED + exit 1 +fi + +exit 0