-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathanp_sine_1d_regression.py
77 lines (58 loc) · 2.14 KB
/
anp_sine_1d_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""Script that utilizes an ANP to regress points to a sine curve."""
import os
import sys
import torch
from matplotlib import pyplot as plt
# Provide access to modules in repo.
sys.path.insert(0, os.path.abspath('neural_process_models'))
sys.path.insert(0, os.path.abspath('misc'))
from neural_process_models.anp import ANP_Model
from misc.test_sin_regression.Sin_Wave_Data import sin_wave_data, plot_functions
data = sin_wave_data()
np_model = ANP_Model(x_dim=1,
y_dim=1,
mlp_hidden_size_list=[256, 256, 256, 256],
latent_dim=256,
use_rnn=False,
use_self_attention=True,
use_deter_path=True)
optim = torch.optim.Adam(np_model.parameters(), lr=1e-4)
num_epochs = 1000
batch_size = 16
for epoch in range(1, num_epochs + 1):
print("step = " + str(epoch))
np_model.train()
plt.clf()
optim.zero_grad()
ctt_x, ctt_y, tgt_x, tgt_y = data.query(batch_size=batch_size,
context_x_start=-6,
context_x_end=6,
context_x_num=200,
target_x_start=-6,
target_x_end=6,
target_x_num=200)
mu, sigma, log_p, kl, loss = np_model(ctt_x, ctt_y, tgt_x, tgt_y)
# print('kl =', kl)
print('loss = ', loss)
# print('mu.size() =', mu.size())
# print('sigma.size() =', sigma.size())
# tgt_x_np = tgt_x[0, :, :].squeeze(-1).numpy()
# print('tgt_x_np.shape =', tgt_x_np.shape)
loss.backward()
optim.step()
np_model.eval()
plt.ion()
# fig = plt.figure()
plot_functions(tgt_x.numpy(),
tgt_y.numpy(),
ctt_x.numpy(),
ctt_y.numpy(),
mu.detach().numpy(),
sigma.detach().numpy())
title_str = 'ANP Training at epoch ' + str(epoch)
plt.title(title_str)
if epoch % 5 == 0:
plt.savefig(title_str)
plt.pause(0.1)
plt.ioff()
plt.show()