-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathcreate_graphs.py
155 lines (148 loc) · 5.64 KB
/
create_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import networkx as nx
import numpy as np
from utils import *
from data import *
def create(args):
### load datasets
graphs=[]
# synthetic graphs
if args.graph_type=='ladder':
graphs = []
for i in range(100, 201):
graphs.append(nx.ladder_graph(i))
args.max_prev_node = 10
elif args.graph_type=='ladder_small':
graphs = []
for i in range(2, 11):
graphs.append(nx.ladder_graph(i))
args.max_prev_node = 10
elif args.graph_type=='tree':
graphs = []
for i in range(2,5):
for j in range(3,5):
graphs.append(nx.balanced_tree(i,j))
args.max_prev_node = 256
elif args.graph_type=='caveman':
# graphs = []
# for i in range(5,10):
# for j in range(5,25):
# for k in range(5):
# graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1))
graphs = []
for i in range(2, 3):
for j in range(30, 81):
for k in range(10):
graphs.append(caveman_special(i,j, p_edge=0.3))
args.max_prev_node = 100
elif args.graph_type=='caveman_small':
# graphs = []
# for i in range(2,5):
# for j in range(2,6):
# for k in range(10):
# graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1))
graphs = []
for i in range(2, 3):
for j in range(6, 11):
for k in range(20):
graphs.append(caveman_special(i, j, p_edge=0.8)) # default 0.8
args.max_prev_node = 20
elif args.graph_type=='caveman_small_single':
# graphs = []
# for i in range(2,5):
# for j in range(2,6):
# for k in range(10):
# graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1))
graphs = []
for i in range(2, 3):
for j in range(8, 9):
for k in range(100):
graphs.append(caveman_special(i, j, p_edge=0.5))
args.max_prev_node = 20
elif args.graph_type.startswith('community'):
num_communities = int(args.graph_type[-1])
print('Creating dataset with ', num_communities, ' communities')
c_sizes = np.random.choice([12, 13, 14, 15, 16, 17], num_communities)
#c_sizes = [15] * num_communities
for k in range(3000):
graphs.append(n_community(c_sizes, p_inter=0.01))
args.max_prev_node = 80
elif args.graph_type=='grid':
graphs = []
for i in range(10,20):
for j in range(10,20):
graphs.append(nx.grid_2d_graph(i,j))
args.max_prev_node = 40
elif args.graph_type=='grid_small':
graphs = []
for i in range(2,5):
for j in range(2,6):
graphs.append(nx.grid_2d_graph(i,j))
args.max_prev_node = 15
elif args.graph_type=='barabasi':
graphs = []
for i in range(100,200):
for j in range(4,5):
for k in range(5):
graphs.append(nx.barabasi_albert_graph(i,j))
args.max_prev_node = 130
elif args.graph_type=='barabasi_small':
graphs = []
for i in range(4,21):
for j in range(3,4):
for k in range(10):
graphs.append(nx.barabasi_albert_graph(i,j))
args.max_prev_node = 20
elif args.graph_type=='grid_big':
graphs = []
for i in range(36, 46):
for j in range(36, 46):
graphs.append(nx.grid_2d_graph(i, j))
args.max_prev_node = 90
elif 'barabasi_noise' in args.graph_type:
graphs = []
for i in range(100,101):
for j in range(4,5):
for k in range(500):
graphs.append(nx.barabasi_albert_graph(i,j))
graphs = perturb_new(graphs,p=args.noise/10.0)
args.max_prev_node = 99
# real graphs
elif args.graph_type == 'enzymes':
graphs= Graph_load_batch(min_num_nodes=10, name='ENZYMES')
args.max_prev_node = 25
elif args.graph_type == 'enzymes_small':
graphs_raw = Graph_load_batch(min_num_nodes=10, name='ENZYMES')
graphs = []
for G in graphs_raw:
if G.number_of_nodes()<=20:
graphs.append(G)
args.max_prev_node = 15
elif args.graph_type == 'protein':
graphs = Graph_load_batch(min_num_nodes=20, name='PROTEINS_full')
args.max_prev_node = 80
elif args.graph_type == 'DD':
graphs = Graph_load_batch(min_num_nodes=100, max_num_nodes=500, name='DD',node_attributes=False,graph_labels=True)
args.max_prev_node = 230
elif args.graph_type == 'citeseer':
_, _, G = Graph_load(dataset='citeseer')
G = max(nx.connected_component_subgraphs(G), key=len)
G = nx.convert_node_labels_to_integers(G)
graphs = []
for i in range(G.number_of_nodes()):
G_ego = nx.ego_graph(G, i, radius=3)
if G_ego.number_of_nodes() >= 50 and (G_ego.number_of_nodes() <= 400):
graphs.append(G_ego)
args.max_prev_node = 250
elif args.graph_type == 'citeseer_small':
_, _, G = Graph_load(dataset='citeseer')
G = max(nx.connected_component_subgraphs(G), key=len)
G = nx.convert_node_labels_to_integers(G)
graphs = []
for i in range(G.number_of_nodes()):
G_ego = nx.ego_graph(G, i, radius=1)
if (G_ego.number_of_nodes() >= 4) and (G_ego.number_of_nodes() <= 20):
graphs.append(G_ego)
shuffle(graphs)
graphs = graphs[0:200]
args.max_prev_node = 15
return graphs