-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDeMFInet.py
871 lines (697 loc) · 35.8 KB
/
DeMFInet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
import functools, torch, random
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
"""
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@ Proposed Architecture: DeMFI-Net @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
"""
class DeMFInet(nn.Module):
# reference: torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
def __init__(self, args):
super(DeMFInet, self).__init__()
self.args = args
self.device = torch.device(
'cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') # will be used as "x.to(device)"
self.nf = args.nf
self.scale_factor = args.scale_factor
# self.lrelu = nn.LeakyReLU(negative_slope=0.1)
self.relu = nn.ReLU()
""" Stage I: DeMFI-Net_bs (bs: baseline version) [Fig.3(a)] """
self.FF_RDB_Module = FF_RDB(args)
self.FAC_FB_Module = FAC_FB(args)
self.Refine_Module = UNet(args)
self.Dec_first = nn.Conv3d(self.nf, self.nf, [1, 3, 3], 1, [0, 1, 1], bias=True)
ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN_3D, nf=self.nf)
self.Decoder_res = make_layer(ResidualBlock_noBN_f, args.num_ResB_Dec)
self.Dec_last1 = nn.Conv3d(self.nf, self.nf, [1, 3, 3], 1, [0, 1, 1], bias=True)
self.Dec_last2 = nn.Conv3d(self.nf, 3, [1, 3, 3], 1, [0, 1, 1], bias=True)
""" Stage II: DeMFI-Net_rb (rb: recursive boosting) [Fig.3(c)] """
self.Ch_Reducer = nn.Conv2d(self.nf * 3, self.nf, 7, padding=3, bias=True)
self.Booster_Module = Booster(args)
self.Dec_first_2 = nn.Conv2d(9 + self.nf + (4 * 2 + 1) + (2 * 2 + 1) + 12, self.nf, 3, 1, 1, bias=True)
ResidualBlock_noBN_f_2 = functools.partial(ResidualBlock_noBN, nf=self.nf)
self.Decoder_res_2 = make_layer(ResidualBlock_noBN_f_2, args.num_ResB_Dec)
self.Dec_last1_2 = nn.Conv2d(self.nf, self.nf, 3, 1, 1, bias=True)
self.Dec_last2_2 = nn.Conv2d(self.nf, 9, 3, 1, 1, bias=True) # only focus on 0,t,1
def forward(self, x, t_value, num_update=None, is_training=None):
'''
x shape : [B,C,T,H,W]
t_value shape : [B,1] ###############
'''
B, C, T, H, W = x.size()
B0 = x[:, :, 0, :, :]
B1 = x[:, :, 1, :, :]
B_m1 = x[:, :, 2, :, :]
B2 = x[:, :, 3, :, :]
""" Stage I: Feature-Flow-based Warping and Blending (FWB), Features to Sharp Frames """
## Features (F) and Flows (f) Extraction, caution: F (tanh) """
F0, F1, flow_01, flow_10, occ_0_logit = self.FF_RDB_Module(B0, B1, B_m1, B2)
## t-Alignment
# Ft: "feature"-based backward warping and blending by using occlusion maps
t_value = torch.unsqueeze(torch.unsqueeze(t_value, -1), -1) # [B, 1, 1, 1]
flow_t0, flow_t1 = CFR_flow_t_align(self.device, flow_01, flow_10, t_value) # CFR: Complementary Flow Reversal
occ_0 = torch.sigmoid(occ_0_logit)
occ_1 = 1 - occ_0
Ft = (1 - t_value) * occ_0 * \
bwarp(self.device, F0, flow_t0) \
+ t_value * occ_1 * bwarp(self.device, F1, flow_t1)
Ft = Ft / ((1 - t_value) * occ_0 + t_value * occ_1) # Eq.(2)
## FAC-FB Module
aF0, aF1, blending_weights, difference_maps = self.FAC_FB_Module(F0, F1, flow_10, flow_01)
## Refinement
Agg1 = torch.cat([aF0, aF1, Ft, flow_t0, flow_t1, flow_01, flow_10, occ_0_logit], dim=1)
Agg1 = self.Refine_Module(Agg1) + torch.cat(
[flow_t0, flow_t1, occ_0_logit, aF0, aF1],
dim=1)
rflow_t0 = Agg1[:, :2, :, :]
rflow_t1 = Agg1[:, 2:4, :, :]
occ_0_logit = Agg1[:, 4:5, :, :]
occ_0 = torch.sigmoid(occ_0_logit)
occ_1 = 1 - occ_0
rF0_dec1 = torch.tanh(Agg1[:, 5: 5 + self.nf, :, :])
rF1_dec1 = torch.tanh(Agg1[:, 5 + self.nf: 5 + self.nf * 2, :, :])
## Decoding Features into Sharp Frames with D1 """
rFt_dec1 = (1 - t_value) * occ_0 * \
bwarp(self.device, rF0_dec1, rflow_t0) \
+ t_value * occ_1 * bwarp(self.device, rF1_dec1, rflow_t1)
rFt_dec1 = rFt_dec1 / ((1 - t_value) * occ_0 + t_value * occ_1)
Dec_inputs = torch.stack([rF0_dec1, rF1_dec1, rFt_dec1], 2) # [B,C,3,H,W]
out = self.Decoder_res(self.relu(self.Dec_first(Dec_inputs)))
out = self.relu(self.Dec_last1(out))
out = self.Dec_last2(out)
S0p = out[:, :, 0, :, :]
S1p = out[:, :, 1, :, :]
Stp = out[:, :, 2, :, :]
Sharps_dec1 = [S0p, S1p, Stp]
""" Stage II: Pixel-Flow-based Warping and Blending (PWB), Frames to Frames (residual learning) """
flow_predictions = []
occ0_predictions = []
flow_t0_t1_init = torch.cat((rflow_t0, rflow_t1), dim=1)
flow_predictions.append(flow_t0_t1_init)
occ0_predictions.append(occ_0)
flow_t0_t1_predictions = []
flow_t0_t1_predictions.append([rflow_t0, rflow_t1])
# rec
F_rec = torch.tanh(self.Ch_Reducer(torch.cat((rF0_dec1, rF1_dec1, rFt_dec1), 1))) # [-1,1] due to "tanh"
# ref
t_ref = torch.cat((flow_t0_t1_init, occ_0_logit), 1) # [B,5,H,W]
length1_ref = torch.cat((flow_10, flow_01), 1) # [B,4,H,W]
Sp_ref = torch.cat((S0p, S1p, Stp, B0, B1, B_m1, B2), 1) # [B,21,H,W]
ref_list = [Sp_ref, length1_ref, t_ref] # [B,21,H,W], [B,4,H,W], [B,5,H,W]
# del
delta_list = [flow_t0_t1_init, occ_0_logit] # t-related, # [B,5,H,W]
Sharps_final = []
if num_update == None:
# for 'summary' in 'main.py'
num_update = 1
for itr in range(num_update):
## Update: feature-flows (f_F) -> pixel-flows (f_P)
F_rec, delta_flow, delta_occ = \
self.Booster_Module(F_rec, ref_list, delta_list)
delta_list[0] = delta_list[0] + delta_flow # + delta
delta_list[1] = delta_list[1] + delta_occ # + delta
flow_t0_final = delta_list[0][:, :2, :, :]
flow_t1_final = delta_list[0][:, 2:4, :, :]
occ_0_final = torch.sigmoid(delta_list[1])
occ_1_final = 1 - occ_0_final
occ0_predictions.append(occ_0_final)
## Pixel-Flow-based Warping and Blending (PWB)
flow_predictions.append(torch.cat((flow_t0_final, flow_t1_final), dim=1))
St_new = (1 - t_value) * occ_0_final * \
bwarp(self.device, S0p, flow_t0_final) \
+ t_value * occ_1_final * bwarp(self.device, S1p, flow_t1_final)
St_new = St_new / ((1 - t_value) * occ_0_final + t_value * occ_1_final)
Agg3 = torch.cat([S0p, S1p, St_new,
F_rec,
occ_0, rflow_t0, rflow_t1, flow_10, flow_01,
flow_t0_final, flow_t1_final, occ_0_final,
B0, B1, B_m1, B2], 1) # [B,15+self.nf+(6*2+1)+(2*2+1)+12,H,W]
## Boosting Sharp Frames from D1 with D2 (residual learning) """
out = self.Decoder_res_2(self.relu(self.Dec_first_2(Agg3)))
out = self.relu(self.Dec_last1_2(out))
out = self.Dec_last2_2(out)
S0_final = out[:, 0:3, :, :] + S0p
S1_final = out[:, 3:6, :, :] + S1p
St_final = out[:, 6:9, :, :] + St_new
Sharps_final.append([S0_final, S1_final, St_final])
if self.args.visualization_flag:
blending_weights.append([flow_01, flow_10])
if is_training:
return Sharps_dec1, Sharps_final, flow_predictions, occ0_predictions, \
torch.mean(x[:, :, 0:2, :, :], dim=2), difference_maps, flow_t0_t1_predictions
elif (not is_training and self.args.visualization_flag):
return Sharps_dec1, Sharps_final, flow_predictions, occ0_predictions, \
torch.mean(x[:, :, 0:2, :, :], dim=2), blending_weights, difference_maps
else:
return Sharps_dec1, Sharps_final, flow_predictions, occ0_predictions, torch.mean(x[:, :, 0:2, :, :],
dim=2)
"""
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Main Components @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
"""
""" [Stage I] DeMFI-Net_bs : baseline version """
class FF_RDB(nn.Module):
def __init__(self, args,
G0=96,
num_RDB=12,
C=4,
G=32):
super(FF_RDB, self).__init__()
""" RDN_res-based FF_RDB_Module """
self.args = args
self.nf = args.nf
self.scale_factor = self.args.scale_factor
self.G0 = G0 # 64
kSize = 3
""" # of RDB blocks, conv layers, out channels """
self.num_RDB = num_RDB # 6
self.C = C # 4
self.G = G # 32
""" Shallow Feature Extraction """
self.SFENet1 = nn.Conv2d((3 + 3 + 3 + 3) * self.scale_factor * self.scale_factor,
self.G0, 5, padding=2, stride=1)
self.SFENet2 = nn.Conv2d(self.G0, self.G0, kSize, padding=(kSize - 1) // 2, stride=1)
""" RDBs """
self.RDBs = nn.ModuleList()
for i in range(self.num_RDB):
self.RDBs.append(
RDB(growRate0=self.G0, growRate=self.G, nConvLayers=self.C)
)
""" Global Feature Fusion """
self.GFF = nn.Sequential(*[
nn.Conv2d(self.num_RDB * self.G0, self.G0, 1, padding=0, stride=1),
nn.Conv2d(self.G0, self.G0, kSize, padding=(kSize - 1) // 2, stride=1)
])
""" UP-sampling Net """
self.UPNet = nn.Sequential(*[
nn.Conv2d(self.G0, 256, kSize, padding=(kSize - 1) // 2, stride=1),
nn.PixelShuffle(2),
nn.Conv2d(64, self.nf * 2 + 4 + 1, kSize, padding=(kSize - 1) // 2, stride=1)
]) # modification
def forward(self, B0, B1, Bm1, B2):
cat_B0B1Bm1B2 = torch.cat((B0, B1, Bm1, B2), 1)
B_shuffle = pixel_reshuffle(cat_B0B1Bm1B2, self.scale_factor)
B_input = B_shuffle
f__1 = self.SFENet1(B_input)
x = self.SFENet2(f__1)
RDBs_out = []
for i in range(self.num_RDB):
x = self.RDBs[i](x)
RDBs_out.append(x)
x = self.GFF(torch.cat(RDBs_out, 1))
x += f__1
""" Modification """
S = self.UPNet(x)
F0F1 = torch.tanh(S[:, :2 * self.nf, :, :])
flows = S[:, 2 * self.nf: 2 * self.nf + 4, :, :]
occ = S[:, 2 * self.nf + 4: 2 * self.nf + 4 + 1, :, :]
return F0F1[:, :self.nf, :, :], F0F1[:, self.nf:self.nf * 2, :, :], flows[:, 0:2, :, :], flows[:, 2:4, :,
:], occ
class RDB(nn.Module):
def __init__(self, growRate0, growRate, nConvLayers, kSize=3):
super(RDB, self).__init__()
G0 = growRate0
G = growRate
C = nConvLayers
convs = []
for c in range(C):
convs.append(RDB_Conv(G0 + c * G, G))
self.convs = nn.Sequential(*convs)
# Local Feature Fusion
self.LFF = nn.Conv2d(G0 + C * G, G0, 1, padding=0, stride=1)
def forward(self, x):
return self.LFF(self.convs(x)) + x
class RDB_Conv(nn.Module):
def __init__(self, inChannels, growRate, kSize=3):
super(RDB_Conv, self).__init__()
Cin = inChannels
G = growRate
self.conv = nn.Sequential(*[
nn.Conv2d(Cin, G, kSize, padding=(kSize - 1) // 2, stride=1),
nn.ReLU()
])
def forward(self, x):
out = self.conv(x)
return torch.cat((x, out), 1)
def pixel_reshuffle(input, upscale_factor):
r"""Rearranges elements in a tensor of shape ``[*, C, H, W]`` to a
tensor of shape ``[C*r^2, H/r, W/r]``.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Variable): Input
upscale_factor (int): factor to increase spatial resolution by
Examples:
>>> input = autograd.Variable(torch.Tensor(1, 3, 12, 12))
>>> output = pixel_reshuffle(input,2)
>>> print(output.size())
torch.Size([1, 12, 6, 6])
"""
batch_size, channels, in_height, in_width = input.size()
# // division is to keep data type unchanged. In this way, the out_height is still int type
out_height = in_height // upscale_factor
out_width = in_width // upscale_factor
input_view = input.contiguous().view(batch_size, channels, out_height, upscale_factor, out_width,
upscale_factor)
channels = channels * upscale_factor * upscale_factor
shuffle_out = input_view.permute(0, 1, 3, 5, 2, 4).contiguous()
return shuffle_out.view(batch_size, channels, out_height, out_width)
class FAC_FB(nn.Module):
def __init__(self, args):
super(FAC_FB, self).__init__()
self.args = args
self.nf = args.nf
self.conv_first = nn.Conv2d(self.nf, self.nf, 3, 1, 1, bias=True)
ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf=self.nf)
self.feature_extraction = make_layer(ResidualBlock_noBN_f, args.num_ResB_FACFB)
if args.shared_FGAC_flag:
self.shared_FGAC = FGAC(args)
else:
self.FGAC_F1toF0 = FGAC(args)
self.FGAC_F0toF1 = FGAC(args)
self.relu = nn.ReLU()
def forward(self, F0, F1, flow_10, flow_01):
# feature size: F0 = F1 = [B, nf, H, W]
x = torch.stack([F0, F1], dim=1)
# "torch.stack": Concatenates sequence of tensors along a "new" dimension.
B, N, C, H, W = x.size()
## extract features
enc_fea = self.relu(self.conv_first(x.view(-1, C, H, W))) # (B*N) temporally shared for all frames
enc_fea = self.feature_extraction(enc_fea)
enc_fea = enc_fea.contiguous().view(B, N, -1, H, W)
if self.args.shared_FGAC_flag:
aligned_F0, blending_weight_F0, diff_1to0 = self.shared_FGAC(enc_fea[:, 1, :, :, :], enc_fea[:, 0, :, :, :],
flow_01) # F1 to F0
aligned_F1, blending_weight_F1, diff_0to1 = self.shared_FGAC(enc_fea[:, 0, :, :, :], enc_fea[:, 1, :, :, :],
flow_10) # F0 to F1
else:
aligned_F0, blending_weight_F0, diff_1to0 = self.FGAC_F1toF0(enc_fea[:, 1, :, :, :], enc_fea[:, 0, :, :, :],
flow_01) # F1 to F0
aligned_F1, blending_weight_F1, diff_0to1 = self.FGAC_F0toF1(enc_fea[:, 0, :, :, :], enc_fea[:, 1, :, :, :],
flow_10) # F0 to F1
return aligned_F0, aligned_F1, [blending_weight_F0, blending_weight_F1, blending_weight_F0, blending_weight_F1], \
[diff_1to0, diff_0to1, diff_1to0, diff_0to1]
class FGAC(nn.Module):
def __init__(self, args):
super(FGAC, self).__init__()
""" Flow-Guided Attentive Correlation """
self.args = args
self.nf = args.nf
self.scale = [1]
self.conv_ref_k = nn.Conv2d(self.nf, self.nf, [1, 1], 1,[0, 0])
self.conv_source_k = nn.Conv2d(self.nf, self.nf, [1, 1], 1, [0, 0])
self.feature_ch = self.nf
self.softmax = nn.Softmax(dim=1)
self.w_gen = nn.Conv2d(self.nf * 2, self.nf, [3, 3], 1, [1, 1])
self.w_gen_2 = nn.Conv2d(self.nf, 1, [3, 3], 1, [1, 1])
self.relu = nn.ReLU()
self.fusion = nn.Conv2d(self.nf, self.nf, [1, 1], 1, [0, 0])
# self.w = torch.tensor([1.0], requires_grad=True, device=device)
# optimizer = torch.optim.Adam([{'params':model_net.parameters()},
# {'params':model_net.FAC_FB_Module.FGAC_F1toF0.w,'lr':1e-3},
# {'params':model_net.FAC_FB_Module.FGAC_F0toF1.w,'lr':1e-3}], lr=args.init_lr,
# betas=(0.9, 0.999), weight_decay=args.weight_decay) # optimizer in "main.py"
def forward(self, ref, source, flow_s2r):
init_ref_k = self.conv_ref_k(ref)
init_source_k = self.conv_source_k(source)
source_v = source
ref_k = init_ref_k
source_k = init_source_k
flow_s2r = flow_s2r.contiguous().permute(0, 2, 3, 1).float() # [B,H,W,2]
f_bs, f_h, f_w, f_c = flow_s2r.shape
"""
This is a generalized version when there are both radii for sources (sr) and ref. (rr)
For DeMFI, due to point-wise FGAC, we set rr=0 and sr=0.
"""
rr = 0
sr = 0
""" (i) make centroid based on flow_s2r, then bilinear sampling on ref_k """
# (i-1): make grid
dx = torch.linspace(-rr, rr, 2 * rr + 1)
dy = torch.linspace(-rr, rr, 2 * rr + 1)
delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(flow_s2r.device) # [B,2rr+1,2rr+1,2]
delta_lvl = delta.contiguous().view(1, 1, 2 * rr + 1, 1, 2 * rr + 1, 2).repeat(1, f_h, 1, f_w, 1, 1). \
contiguous().view(1, f_h * (2 * rr + 1), f_w * (2 * rr + 1), 2) # [B, H*(2rr+1),W*(2rr+1),2]
# (i-2): make centroid by using flow
# flow_s2r = flow_s2r.contiguous().view(1, 1,f_h, 1,f_w, 2).repeat(1, 2*rr+1, 1, 2*rr+1, 1, 1)
centroid_lvl = flow_s2r.repeat(1, 2 * rr + 1, 2 * rr + 1, 1) # [B,H*(2rr+1),W*(2rr+1),2]
# (i-3): make flow-grid and bilinear sampling
flow_s2r_lvl = centroid_lvl + delta_lvl # grid (including flow and coordinates): [B,H*(2rr+1),W*(2rr+1), 2]
ref_k = F.avg_pool2d(ref_k, (2 * sr + 1, 2 * sr + 1), (1, 1), padding=sr)
# gathering size of "source grid" in ref_k via average pooling.
indexed_ref_k = bilinear_sampler(ref_k, flow_s2r_lvl) # ref: [B,c,h,w], grid: [B,H*(2rr+1),W*(2rr+1), 2]
# indexed_ref_k: [B,C,H*(2rr+1),W*(2rr+1)] (following dim. of grid)
indexed_ref_k = indexed_ref_k.contiguous().view(f_bs, self.feature_ch, f_h, (2 * rr + 1), f_w,
(2 * rr + 1)).permute(0,1,3,2,5,4)
indexed_ref_k = indexed_ref_k.contiguous().view(f_bs, self.feature_ch, (2 * rr + 1) * f_h,
(2 * rr + 1) * f_w) # [batch,C,(2rr+1)*H,(2rr+1)*W]
# caution: order is very important !
indexed_ref_k = F.unfold(indexed_ref_k,
kernel_size=((2 * rr + 1), (2 * rr + 1)),
stride=((2 * rr + 1), (2 * rr + 1)), padding=rr) # [batch, C*((2rr+1)**2), H, W]
grid_sampled_ref_k = indexed_ref_k.contiguous().view(f_bs, self.feature_ch, (2 * rr + 1) ** 2, f_h, f_w)
# [batch, C, (2rr+1)**2, H, W]
""" (ii) unfold source_k for computing attentive correlation """
source_k = F.avg_pool2d(source_k, (2 * sr + 1, 2 * sr + 1), (1, 1), padding=sr)
# gathering size of "source grid" in source_k via average pooling.
source_k = torch.unsqueeze(source_k, 2)
# [batch, C, 1, H, W]
corr_r2s_k = torch.sum(grid_sampled_ref_k * source_k, 1) # ab
# element-wise multiplication (source_k is broadcasted), then sum.
# [batch, (2rr+1)**2, H, W]
softmax_corr_r2s_k = torch.unsqueeze(self.softmax(corr_r2s_k), 1)
# [batch, 1, (2rr+1)**2, H, W]
FAC_sr = torch.sum(grid_sampled_ref_k * softmax_corr_r2s_k, 2) # Eq.(3)
# element-wise multiplication (softmax_corr_r2s_k is broadcasted)
# [batch, C, H, W]
E_s = self.fusion(FAC_sr) # right term of Eq.(4)
w_sr = torch.sigmoid(self.w_gen_2(
self.relu(self.w_gen(torch.cat([source_v, E_s], dim=1))))) # spatially variant (adaptive)
bolstered_F_s = w_sr * source_v + (1 - w_sr) * E_s # Eq.(4)
""" min-max normalization for visualization of difference feature maps after applying Eq.(4) """
# diff = torch.abs(bolstered_F_s) - torch.abs(source_v)
diff = bolstered_F_s - source_v
diff = torch.mean(torch.abs(diff), 1, keepdim=True)
b, c, h, w = diff.shape
diff = diff.view(b, -1)
diff -= diff.min(1, keepdim=True)[0]
diff /= diff.max(1, keepdim=True)[0]
diff = diff.view(b, 1, h, w)
if self.args.visualization_flag:
E_s = torch.mean(torch.abs(E_s), 1, keepdim=True)
b, c, h, w = E_s.shape
E_s = E_s.view(b, -1)
E_s -= E_s.min(1, keepdim=True)[0]
E_s /= E_s.max(1, keepdim=True)[0]
E_s = E_s.view(b, 1, h, w)
source_v = torch.mean(torch.abs(source_v), 1, keepdim=True)
b, c, h, w = source_v.shape
source_v = source_v.view(b, -1)
source_v -= source_v.min(1, keepdim=True)[0]
source_v /= source_v.max(1, keepdim=True)[0]
source_v = source_v.view(b, 1, h, w)
init_ref_k = torch.mean(torch.abs(init_ref_k), 1, keepdim=True)
b, c, h, w = init_ref_k.shape
init_ref_k = init_ref_k.view(b, -1)
init_ref_k -= init_ref_k.min(1, keepdim=True)[0]
init_ref_k /= init_ref_k.max(1, keepdim=True)[0]
init_ref_k = init_ref_k.view(b, 1, h, w)
bolstered_F_s_ch1 = torch.mean(torch.abs(bolstered_F_s), 1, keepdim=True)
b, c, h, w = bolstered_F_s_ch1.shape
bolstered_F_s_ch1 = bolstered_F_s_ch1.view(b, -1)
bolstered_F_s_ch1 -= bolstered_F_s_ch1.min(1, keepdim=True)[0]
bolstered_F_s_ch1 /= bolstered_F_s_ch1.max(1, keepdim=True)[0]
bolstered_F_s_ch1 = bolstered_F_s_ch1.view(b, 1, h, w)
return bolstered_F_s, [w_sr, (1 - w_sr),
source_v, init_ref_k, E_s, bolstered_F_s_ch1], diff
else:
return bolstered_F_s, w_sr, diff
def bilinear_sampler(img, flow_s2r_lvl, mode='bilinear', mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = flow_s2r_lvl.split([1, 1], dim=-1)
xgrid = 2 * xgrid / (W - 1) - 1
ygrid = 2 * ygrid / (H - 1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
# img = F.grid_sample(img, grid, align_corners=True)
img = F.grid_sample(img, grid, align_corners=True) # check: align_corners
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class ResidualBlock_noBN_3D(nn.Module):
'''Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock_noBN_3D, self).__init__()
self.conv1 = nn.Conv3d(nf, nf, [1, 3, 3], 1, [0, 1, 1], bias=True)
self.conv2 = nn.Conv3d(nf, nf, [1, 3, 3], 1, [0, 1, 1], bias=True)
# initialization # check
# initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = F.relu(self.conv1(x), inplace=True)
out = self.conv2(out)
return identity + out
class ResidualBlock_noBN(nn.Module):
'''Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock_noBN, self).__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
# initialization # check
# initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = F.relu(self.conv1(x), inplace=True)
out = self.conv2(out)
return identity + out
class UNet(nn.Module):
def __init__(self, args):
super(UNet, self).__init__()
self.args = args
self.nf = args.nf
self.relu = nn.ReLU()
self.NN = nn.UpsamplingNearest2d(scale_factor=2)
self.enc1 = nn.Conv2d((self.nf) * 3 + 4 * 2 + 1, self.nf, [4, 4], 2, [1, 1])
self.enc2 = nn.Conv2d(self.nf, 2 * self.nf, [4, 4], 2, [1, 1])
self.enc3 = nn.Conv2d(2 * self.nf, 4 * self.nf, [4, 4], 2, [1, 1])
# self.enc4 = nn.Conv2d(4*self.nf, 4*self.nf, [4, 4], 2, [1, 1])
self.dec0 = nn.Conv2d(4 * self.nf, 4 * self.nf, [3, 3], 1, [1, 1])
self.dec1 = nn.Conv2d(4 * self.nf + 2 * self.nf, 2 * self.nf, [3, 3], 1,
[1, 1]) ## input concatenated with enc2
self.dec2 = nn.Conv2d(2 * self.nf + self.nf, self.nf, [3, 3], 1, [1, 1])
self.dec3 = nn.Conv2d(self.nf, 2 * 2 + 1 + (self.nf * 2), [3, 3], 1, [1, 1])
def forward(self, concat):
enc1 = self.relu(self.enc1(concat))
enc2 = self.relu(self.enc2(enc1))
out = self.relu(self.enc3(enc2))
out = self.relu(self.dec0(out))
out = self.NN(out)
out = torch.cat((out, enc2), dim=1)
out = self.relu(self.dec1(out))
out = self.NN(out)
out = torch.cat((out, enc1), dim=1)
out = self.relu(self.dec2(out))
out = self.NN(out)
out = self.dec3(out)
return out
def CFR_flow_t_align(device, flow_01, flow_10, t_value):
""" modified from https://github.com/JihyongOh/XVFI/blob/main/XVFInet.py"""
## Feature warping
flow_01, norm0 = fwarp(device, flow_01,
t_value * flow_01) ## Actually, F (t) -> (t+1). Translation. Not normalized yet
flow_10, norm1 = fwarp(device, flow_10, (
1 - t_value) * flow_10) ## Actually, F (1-t) -> (-t). Translation. Not normalized yet
flow_t0 = -(1 - t_value) * (t_value) * flow_01 + (t_value) * (t_value) * flow_10
flow_t1 = (1 - t_value) * (1 - t_value) * flow_01 - (t_value) * (1 - t_value) * flow_10
norm = (1 - t_value) * norm0 + t_value * norm1
mask_ = (norm.detach() > 0).type(norm.type())
flow_t0 = (1 - mask_) * flow_t0 + mask_ * (flow_t0.clone() / (norm.clone() + (1 - mask_)))
flow_t1 = (1 - mask_) * flow_t1 + mask_ * (flow_t1.clone() / (norm.clone() + (1 - mask_)))
return flow_t0, flow_t1
def fwarp(device, img, flo):
"""
-img: image (N, C, H, W)
-flo: optical flow (N, 2, H, W)
elements of flo is in [0, H] and [0, W] for dx, dy
"""
# (x1, y1) (x1, y2)
# +---------------+
# | |
# | o(x, y) |
# | |
# | |
# | |
# | |
# +---------------+
# (x2, y1) (x2, y2)
N, C, _, _ = img.size()
# translate start-point optical flow to end-point optical flow
y = flo[:, 0:1:, :]
x = flo[:, 1:2, :, :]
x = x.repeat(1, C, 1, 1)
y = y.repeat(1, C, 1, 1)
# Four point of square (x1, y1), (x1, y2), (x2, y1), (y2, y2)
x1 = torch.floor(x)
x2 = x1 + 1
y1 = torch.floor(y)
y2 = y1 + 1
# firstly, get gaussian weights
w11, w12, w21, w22 = get_gaussian_weights(x, y, x1, x2, y1, y2)
# secondly, sample each weighted corner
img11, o11 = sample_one(device, img, x1, y1, w11)
img12, o12 = sample_one(device, img, x1, y2, w12)
img21, o21 = sample_one(device, img, x2, y1, w21)
img22, o22 = sample_one(device, img, x2, y2, w22)
imgw = img11 + img12 + img21 + img22
o = o11 + o12 + o21 + o22
return imgw, o
def get_gaussian_weights(x, y, x1, x2, y1, y2):
w11 = torch.exp(-((x - x1) ** 2 + (y - y1) ** 2))
w12 = torch.exp(-((x - x1) ** 2 + (y - y2) ** 2))
w21 = torch.exp(-((x - x2) ** 2 + (y - y1) ** 2))
w22 = torch.exp(-((x - x2) ** 2 + (y - y2) ** 2))
return w11, w12, w21, w22
def sample_one(device, img, shiftx, shifty, weight):
"""
Input:
-img (N, C, H, W)
-shiftx, shifty (N, c, H, W)
"""
N, C, H, W = img.size()
# flatten all (all restored as Tensors)
flat_shiftx = shiftx.view(-1)
flat_shifty = shifty.view(-1)
flat_basex = torch.arange(0, H, requires_grad=False).view(-1, 1)[None, None].to(device).long().repeat(N, C,
1,
W).view(
-1)
flat_basey = torch.arange(0, W, requires_grad=False).view(1, -1)[None, None].to(device).long().repeat(N, C,
H,
1).view(
-1)
flat_weight = weight.view(-1)
flat_img = img.contiguous().view(-1)
# The corresponding positions in I1
idxn = torch.arange(0, N, requires_grad=False).view(N, 1, 1, 1).to(device).long().repeat(1, C, H, W).view(
-1)
idxc = torch.arange(0, C, requires_grad=False).view(1, C, 1, 1).to(device).long().repeat(N, 1, H, W).view(
-1)
# ttype = flat_basex.type()
idxx = flat_shiftx.long() + flat_basex
idxy = flat_shifty.long() + flat_basey
# recording the inside part the shifted
mask = idxx.ge(0) & idxx.lt(H) & idxy.ge(0) & idxy.lt(W)
# Mask off points out of boundaries
ids = (idxn * C * H * W + idxc * H * W + idxx * W + idxy)
ids_mask = torch.masked_select(ids, mask).clone().to(device)
# Note here! accmulate fla must be true for proper bp
img_warp = torch.zeros([N * C * H * W, ]).to(device)
img_warp.put_(ids_mask, torch.masked_select(flat_img * flat_weight, mask), accumulate=True)
one_warp = torch.zeros([N * C * H * W, ]).to(device)
one_warp.put_(ids_mask, torch.masked_select(flat_weight, mask), accumulate=True)
return img_warp.view(N, C, H, W), one_warp.view(N, C, H, W)
def bwarp(device, x, flo):
'''
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
'''
B, C, H, W = x.size()
# mesh grid
# xx = torch.arange(0,W).view(1,-1).repeat(H,1)
# yy = torch.arange(0,H).view(-1,1).repeat(1,W)
# xx = xx.view(1,1,H,W).repeat(B,1,1,1)
# yy = xx.view(1,1,H,W).repeat(B,1,1,1)
xx = torch.arange(0, W).view(1, 1, 1, W).expand(B, 1, H, W)
yy = torch.arange(0, H).view(1, 1, H, 1).expand(B, 1, H, W)
grid = torch.cat((xx, yy), 1).float()
if x.is_cuda:
grid = grid.to(device)
vgrid = torch.autograd.Variable(grid) + flo
# scale grid to [-1,1]
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0
vgrid = vgrid.permute(0, 2, 3, 1) # [B,H,W,2]
output = nn.functional.grid_sample(x, vgrid, align_corners=True)
mask = torch.autograd.Variable(torch.ones(x.size())).to(device)
mask = nn.functional.grid_sample(mask, vgrid, align_corners=True)
# mask[mask<0.9999] = 0
# mask[mask>0] = 1
mask = mask.masked_fill_(mask < 0.999, 0)
mask = mask.masked_fill_(mask > 0, 1)
return output * mask
""" [Stage II] DeMFI-Net_rb : recursive boosting """
class Booster(nn.Module):
def __init__(self, args):
super(Booster, self).__init__()
self.args = args
self.nf = args.nf
self.Mixer = Mixer(args)
self.GB = SepConvGRU(h_dim=args.nf, x_dim=args.nf) # forward(self, h, x)
self.flow_occ = FlowOcc(x_dim=args.nf, nf=args.nf) # forward(self, x)
def forward(self, F_rec, ref_list, delta_list):
"""
:param F_rec: torch.cat((S0p, S1p, Stp), 1) # [B,9,H,W]
:param ref_list: [Sp_ref, length1_ref, t_ref] # [B,21,H,W], [B,4,H,W], [B,5,H,W]
:param delta_list: [del_flow_t0_t1, del_occ_0_logit] # t-related, # [B,5,H,W]
"""
blend_enc = self.Mixer(ref_list, delta_list) # Agg2
F_rec = self.GB(F_rec, blend_enc)
delta_flow_occ = self.flow_occ(F_rec)
delta_flow = delta_flow_occ[:, :4, :, :]
delta_occ = delta_flow_occ[:, 4:5, :, :]
return F_rec, delta_flow, delta_occ
class Mixer(nn.Module):
def __init__(self, args):
super(Mixer, self).__init__()
self.args = args
self.conv_ref1 = nn.Conv2d(21 + 10 + 5 - 2 - 4, args.nf // 2, 7, padding=3)
self.conv_ref2 = nn.Conv2d(args.nf // 2, args.nf // 2, 3, padding=1)
self.conv_delta1 = nn.Conv2d(5, args.nf // 2, 7, padding=3)
self.conv_delta2 = nn.Conv2d(args.nf // 2, args.nf // 2, 3, padding=1)
self.conv_blend1 = nn.Conv2d(args.nf, args.nf // 2, 3, padding=1)
self.conv_blend2 = nn.Conv2d(args.nf // 2, args.nf, 3, padding=1)
self.relu = nn.ReLU()
def forward(self, ref_list, delta_list):
"""
:param ref_list: [Sp_ref, length1_ref, t_ref] # [B,21,H,W], [B,4,H,W], # [B,5,H,W]
:param delta_list: [del_flow_t0_t1, del_occ_0_logit] # t-related, # [B,5,H,W]
"""
ref_enc = self.relu(self.conv_ref1(torch.cat(ref_list, 1)))
ref_enc = self.relu(self.conv_ref2(ref_enc))
delta_enc = self.relu(self.conv_delta1(torch.cat(delta_list, 1)))
delta_enc = self.relu(self.conv_delta2(delta_enc))
blend_enc = self.relu((self.conv_blend1(torch.cat([ref_enc, delta_enc], dim=1))))
blend_enc = self.relu((self.conv_blend2(blend_enc)))
return blend_enc
class SepConvGRU(nn.Module):
def __init__(self, h_dim, x_dim):
super(SepConvGRU, self).__init__()
self.convz1 = nn.Conv2d(h_dim + x_dim, h_dim, (1, 5), padding=(0, 2))
self.convr1 = nn.Conv2d(h_dim + x_dim, h_dim, (1, 5), padding=(0, 2))
self.convq1 = nn.Conv2d(h_dim + x_dim, h_dim, (1, 5), padding=(0, 2))
self.convz2 = nn.Conv2d(h_dim + x_dim, h_dim, (5, 1), padding=(2, 0))
self.convr2 = nn.Conv2d(h_dim + x_dim, h_dim, (5, 1), padding=(2, 0))
self.convq2 = nn.Conv2d(h_dim + x_dim, h_dim, (5, 1), padding=(2, 0))
def forward(self, h, x):
"""
:param h: F_rec # [B,64,H,W]
:param x: blend_enc # [B,64,H,W]
"""
# horizontal
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz1(hx))
r = torch.sigmoid(self.convr1(hx))
q = torch.tanh(self.convq1(torch.cat([r * h, x], dim=1)))
h = (1 - z) * h + z * q
# vertical
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz2(hx))
r = torch.sigmoid(self.convr2(hx))
q = torch.tanh(self.convq2(torch.cat([r * h, x], dim=1)))
h = (1 - z) * h + z * q
return h
class FlowOcc(nn.Module):
def __init__(self, x_dim, nf):
super(FlowOcc, self).__init__()
self.conv1 = nn.Conv2d(x_dim, nf // 2, 3, padding=1)
self.conv2 = nn.Conv2d(nf // 2, 5, 3, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
return self.conv2(self.relu(self.conv1(x)))