-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathutils.py
960 lines (772 loc) · 39.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
from __future__ import division
import os, glob, sys, torch, shutil, random, math, time, cv2
import numpy as np
import torch.utils.data as data
import torch.nn as nn
import pandas as pd
import torch.nn.functional as F
from datetime import datetime
from torch.nn import init
from skimage.measure import compare_ssim
from skimage.metrics import structural_similarity
from torch.autograd import Variable
from torchvision import models
class save_manager():
def __init__(self, args):
self.args = args
self.model_dir = self.args.net_type + '_' + self.args.dataset + '_exp' + str(self.args.exp_num)
print("model_dir:", self.model_dir)
# ex) model_dir = "XVFInet_exp1"
self.checkpoint_dir = os.path.join(self.args.checkpoint_dir, self.model_dir)
# './checkpoint_dir/XVFInet_exp1"
check_folder(self.checkpoint_dir)
print("checkpoint_dir:", self.checkpoint_dir)
self.text_dir = os.path.join(self.args.text_dir, self.model_dir)
print("text_dir:", self.text_dir)
""" Save a text file """
if not os.path.exists(self.text_dir + '.txt'):
self.log_file = open(self.text_dir + '.txt', 'w')
# "w" - Write - Opens a file for writing, creates the file if it does not exist
self.log_file.write('----- Model parameters -----\n')
self.log_file.write(str(datetime.now())[:-7] + '\n')
for arg in vars(self.args):
self.log_file.write('{} : {}\n'.format(arg, getattr(self.args, arg)))
# ex) ./text_dir/XVFInet_exp1.txt
self.log_file.close()
# "a" - Append - Opens a file for appending, creates the file if it does not exist
def write_info(self, strings):
self.log_file = open(self.text_dir + '.txt', 'a')
self.log_file.write(strings)
self.log_file.close()
def save_best_model(self, combined_state_dict, best_PSNR_flag):
file_name = os.path.join(self.checkpoint_dir, self.model_dir + '_latest.pt')
# file_name = "./checkpoint_dir/XVFInet_exp1/XVFInet_exp1_latest.ckpt
torch.save(combined_state_dict, file_name)
if best_PSNR_flag:
shutil.copyfile(file_name, os.path.join(self.checkpoint_dir, self.model_dir + '_best_PSNR.pt'))
# file_path = "./checkpoint_dir/XVFInet_exp1/XVFInet_exp1_best_PSNR.ckpt
def save_epc_model(self, combined_state_dict, epoch):
file_name = os.path.join(self.checkpoint_dir, self.model_dir + '_epc' + str(epoch) + '.pt')
# file_name = "./checkpoint_dir/XVFInet_exp1/XVFInet_exp1_epc10.ckpt
torch.save(combined_state_dict, file_name)
def load_epc_model(self, epoch):
checkpoint = torch.load(os.path.join(self.checkpoint_dir, self.model_dir + '_epc' + str(epoch - 1) + '.pt'))
print("load model '{}', epoch: {}, best_PSNR: {:3f}".format(
os.path.join(self.checkpoint_dir, self.model_dir + '_epc' + str(epoch - 1) + '.pt'), checkpoint['last_epoch'] + 1,
checkpoint['best_PSNR']))
return checkpoint
def load_model(self, ):
# checkpoint = torch.load(self.checkpoint_dir + '/' + self.model_dir + '_latest.pt')
checkpoint = torch.load(os.path.join(self.checkpoint_dir, self.model_dir + '_latest.pt'), map_location='cuda:0')
print("load model '{}', epoch: {},".format(
os.path.join(self.checkpoint_dir, self.model_dir + '_latest.pt'), checkpoint['last_epoch'] + 1))
return checkpoint
def load_best_PSNR_model(self, ):
checkpoint = torch.load(os.path.join(self.checkpoint_dir, self.model_dir + '_best_PSNR.pt'))
print("load _best_PSNR model '{}', epoch: {}, best_PSNR: {:3f}, best_SSIM: {:3f}".format(
os.path.join(self.checkpoint_dir, self.model_dir + '_best_PSNR.pt'), checkpoint['last_epoch'] + 1,
checkpoint['best_PSNR'], checkpoint['best_SSIM']))
return checkpoint
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def weights_init(m):
classname = m.__class__.__name__
if (classname.find('Conv2d') != -1) or (classname.find('Conv3d') != -1):
init.xavier_normal_(m.weight)
# init.kaiming_normal_(m.weight, nonlinearity='relu')
if hasattr(m, 'bias') and m.bias is not None:
init.zeros_(m.bias)
def get_train_data(args, max_t_step_size):
if args.dataset == 'X4K1000FPS':
data_train = X_Train(args, max_t_step_size)
elif args.dataset == 'Vimeo':
data_train = Vimeo_Train(args)
dataloader = torch.utils.data.DataLoader(data_train, batch_size=args.batch_size, drop_last=True, shuffle=True,
num_workers=int(args.num_thrds), pin_memory=False)
return dataloader
def get_test_data(args, multiple, validation):
if args.dataset == 'X4K1000FPS' and args.phase != 'test_custom':
data_test = X_Test(args, multiple, validation) # 'validation' for validation while training for simplicity
elif args.dataset == 'Vimeo' and args.phase != 'test_custom':
data_test = Vimeo_Test(args, validation)
elif args.phase == 'test_custom':
data_test = Custom_Test(args, multiple)
dataloader = torch.utils.data.DataLoader(data_test, batch_size=1, drop_last=True, shuffle=False, pin_memory=False)
return dataloader
def frames_loader_train(args, candidate_frames, frameRange):
frames = []
for frameIndex in frameRange:
frame = cv2.imread(candidate_frames[frameIndex])
frames.append(frame)
(ih, iw, c) = frame.shape
frames = np.stack(frames, axis=0) # (T, H, W, 3)
if args.need_patch: ## random crop
ps = args.patch_size
ix = random.randrange(0, iw - ps + 1)
iy = random.randrange(0, ih - ps + 1)
frames = frames[:, iy:iy + ps, ix:ix + ps, :]
if random.random() < 0.5: # random horizontal flip
frames = frames[:, :, ::-1, :]
# No vertical flip
rot = random.randint(0, 3) # random rotate
frames = np.rot90(frames, rot, (1, 2))
""" np2Tensor [-1,1] normalized """
frames = RGBframes_np2Tensor(frames, args.img_ch)
return frames
def frames_loader_test(args, I0I1It_Path, validation):
frames = []
for path in I0I1It_Path:
frame = cv2.imread(path)
frames.append(frame)
(ih, iw, c) = frame.shape
frames = np.stack(frames, axis=0) # (T, H, W, 3)
if args.dataset == 'X4K1000FPS':
if validation:
ps = 512
ix = (iw - ps) // 2
iy = (ih - ps) // 2
frames = frames[:, iy:iy + ps, ix:ix + ps, :]
""" np2Tensor [-1,1] normalized """
frames = RGBframes_np2Tensor(frames, args.img_ch)
return frames
def RGBframes_np2Tensor(imgIn, channel):
## input : T, H, W, C
if channel == 1:
# rgb --> Y (gray)
imgIn = np.sum(imgIn * np.reshape([65.481, 128.553, 24.966], [1, 1, 1, 3]) / 255.0, axis=3,
keepdims=True) + 16.0
# to Tensor
ts = (3, 0, 1, 2) ############# dimension order should be [C, T, H, W]
imgIn = torch.Tensor(imgIn.transpose(ts).astype(float)).mul_(1.0)
# normalization [-1,1]
imgIn = (imgIn / 255.0 - 0.5) * 2
return imgIn
def make_2D_dataset_X_Train(dir):
framesPath = []
# Find and loop over all the clips in root `dir`.
for scene_path in sorted(glob.glob(os.path.join(dir, '*', ''))):
sample_paths = sorted(glob.glob(os.path.join(scene_path, '*', '')))
for sample_path in sample_paths:
frame65_list = []
for frame in sorted(glob.glob(os.path.join(sample_path, '*.png'))):
frame65_list.append(frame)
framesPath.append(frame65_list)
print("The number of total training samples : {} which has 65 frames each.".format(
len(framesPath))) ## 4408 folders which have 65 frames each
return framesPath
class X_Train(data.Dataset):
def __init__(self, args, max_t_step_size):
self.args = args
self.max_t_step_size = max_t_step_size
self.framesPath = make_2D_dataset_X_Train(self.args.train_data_path)
self.nScenes = len(self.framesPath)
# Raise error if no images found in train_data_path.
if self.nScenes == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + self.args.train_data_path + "\n"))
def __getitem__(self, idx):
t_step_size = random.randint(2, self.max_t_step_size)
t_list = np.linspace((1 / t_step_size), (1 - (1 / t_step_size)), (t_step_size - 1))
candidate_frames = self.framesPath[idx]
firstFrameIdx = random.randint(0, (64 - t_step_size))
interIdx = random.randint(1, t_step_size - 1) # relative index, 1~self.t_step_size-1
interFrameIdx = firstFrameIdx + interIdx # absolute index
t_value = t_list[interIdx - 1] # [0,1]
if (random.randint(0, 1)):
frameRange = [firstFrameIdx, firstFrameIdx + t_step_size, interFrameIdx]
else: ## temporally reversed order
frameRange = [firstFrameIdx + t_step_size, firstFrameIdx, interFrameIdx]
interIdx = t_step_size - interIdx # (self.t_step_size-1) ~ 1
t_value = 1.0 - t_value
frames = frames_loader_train(self.args, candidate_frames,
frameRange) # including "np2Tensor [-1,1] normalized"
return frames, np.expand_dims(np.array(t_value, dtype=np.float32), 0)
def __len__(self):
return self.nScenes
def make_2D_dataset_X_Test(dir, multiple, t_step_size):
""" make [I0,I1,It,t,scene_folder] """
""" 1D (accumulated) """
testPath = []
t = np.linspace((1 / multiple), (1 - (1 / multiple)), (multiple - 1))
for type_folder in sorted(glob.glob(os.path.join(dir, '*', ''))): # [type1,type2,type3,...]
for scene_folder in sorted(glob.glob(os.path.join(type_folder, '*', ''))): # [scene1,scene2,..]
frame_folder = sorted(glob.glob(scene_folder + '*.png')) # 32 multiple, ['00000.png',...,'00032.png']
for idx in range(0, len(frame_folder), t_step_size): # 0,32,64,...
if idx == len(frame_folder) - 1:
break
for mul in range(multiple - 1):
I0I1It_paths = []
I0I1It_paths.append(frame_folder[idx]) # I0 (fix)
I0I1It_paths.append(frame_folder[idx + t_step_size]) # I1 (fix)
I0I1It_paths.append(frame_folder[idx + int((t_step_size // multiple) * (mul + 1))]) # It
I0I1It_paths.append(t[mul])
I0I1It_paths.append(scene_folder.split(os.path.join(dir, ''))[-1]) # type1/scene1
testPath.append(I0I1It_paths)
return testPath
class X_Test(data.Dataset):
def __init__(self, args, multiple, validation):
self.args = args
self.multiple = multiple
self.validation = validation
if validation:
self.testPath = make_2D_dataset_X_Test(self.args.val_data_path, multiple, t_step_size=32)
else: ## test
self.testPath = make_2D_dataset_X_Test(self.args.test_data_path, multiple, t_step_size=32)
self.nIterations = len(self.testPath)
# Raise error if no images found in test_data_path.
if len(self.testPath) == 0:
if validation:
raise (RuntimeError("Found 0 files in subfolders of: " + self.args.val_data_path + "\n"))
else:
raise (RuntimeError("Found 0 files in subfolders of: " + self.args.test_data_path + "\n"))
def __getitem__(self, idx):
I0, I1, It, t_value, scene_name = self.testPath[idx]
I0I1It_Path = [I0, I1, It]
frames = frames_loader_test(self.args, I0I1It_Path, self.validation)
# including "np2Tensor [-1,1] normalized"
I0_path = I0.split(os.sep)[-1]
I1_path = I1.split(os.sep)[-1]
It_path = It.split(os.sep)[-1]
return frames, np.expand_dims(np.array(t_value, dtype=np.float32), 0), scene_name, [It_path, I0_path, I1_path]
def __len__(self):
return self.nIterations
class Vimeo_Train(data.Dataset):
def __init__(self, args):
self.args = args
self.t = 0.5
self.framesPath = []
f = open(os.path.join(args.vimeo_data_path, 'tri_trainlist.txt'),
'r') # '../Datasets/vimeo_triplet/sequences/tri_trainlist.txt'
while True:
scene_path = f.readline().split('\n')[0]
if not scene_path: break
frames_list = sorted(glob.glob(os.path.join(args.vimeo_data_path, 'sequences', scene_path,
'*.png'))) # '../Datasets/vimeo_triplet/sequences/%05d/%04d/*.png'
self.framesPath.append(frames_list)
f.close
# self.framesPath = self.framesPath[:20]
self.nScenes = len(self.framesPath)
if self.nScenes == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + args.vimeo_data_path + "\n"))
print("nScenes of Vimeo train triplet : ", self.nScenes)
def __getitem__(self, idx):
candidate_frames = self.framesPath[idx]
""" Randomly reverse frames """
if (random.randint(0, 1)):
frameRange = [0, 2, 1]
else:
frameRange = [2, 0, 1]
frames = frames_loader_train(self.args, candidate_frames,
frameRange) # including "np2Tensor [-1,1] normalized"
return frames, np.expand_dims(np.array(0.5, dtype=np.float32), 0)
def __len__(self):
return self.nScenes
class Vimeo_Test(data.Dataset):
def __init__(self, args, validation):
self.args = args
self.framesPath = []
f = open(os.path.join(args.vimeo_data_path, 'tri_testlist.txt'), 'r')
while True:
scene_path = f.readline().split('\n')[0]
if not scene_path: break
frames_list = sorted(glob.glob(os.path.join(args.vimeo_data_path, 'sequences', scene_path,
'*.png'))) # '../Datasets/vimeo_triplet/sequences/%05d/%04d/*.png'
self.framesPath.append(frames_list)
if validation:
self.framesPath = self.framesPath[::37]
f.close
self.num_scene = len(self.framesPath) # total test scenes
if len(self.framesPath) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + args.vimeo_data_path + "\n"))
else:
print("# of Vimeo triplet testset : ", self.num_scene)
def __getitem__(self, idx):
scene_name = self.framesPath[idx][0].split(os.sep)
scene_name = os.path.join(scene_name[-3], scene_name[-2])
I0, It, I1 = self.framesPath[idx]
I0I1It_Path = [I0, I1, It]
frames = frames_loader_test(self.args, I0I1It_Path, validation=False)
I0_path = I0.split(os.sep)[-1]
I1_path = I1.split(os.sep)[-1]
It_path = It.split(os.sep)[-1]
return frames, np.expand_dims(np.array(0.5, dtype=np.float32), 0), scene_name, [It_path, I0_path, I1_path]
def __len__(self):
return self.num_scene
def make_2D_dataset_Custom_Test(dir, multiple):
""" make [I0,I1,It,t,scene_folder] """
""" 1D (accumulated) """
testPath = []
t = np.linspace((1 / multiple), (1 - (1 / multiple)), (multiple - 1))
for scene_folder in sorted(glob.glob(os.path.join(dir, '*', ''))): # [scene1, scene2, scene3, ...]
frame_folder = sorted(glob.glob(scene_folder + '*.png')) # ex) ['00000.png',...,'00123.png']
for idx in range(0, len(frame_folder)):
if idx == len(frame_folder) - 1:
break
for suffix, mul in enumerate(range(multiple - 1)):
I0I1It_paths = []
I0I1It_paths.append(frame_folder[idx]) # I0 (fix)
I0I1It_paths.append(frame_folder[idx + 1]) # I1 (fix)
target_t_Idx = frame_folder[idx].split(os.sep)[-1].split('.')[0]+'_' + str(suffix).zfill(3) + '.png'
# ex) target t name: 00017.png => '00017_1.png'
I0I1It_paths.append(os.path.join(scene_folder, target_t_Idx)) # It
I0I1It_paths.append(t[mul]) # t
I0I1It_paths.append(frame_folder[idx].split(os.path.join(dir, ''))[-1].split(os.sep)[0]) # scene1
testPath.append(I0I1It_paths)
return testPath
# def make_2D_dataset_Custom_Test(dir):
# """ make [I0,I1,It,t,scene_folder] """
# """ 1D (accumulated) """
# testPath = []
# for scene_folder in sorted(glob.glob(os.path.join(dir, '*/'))): # [scene1, scene2, scene3, ...]
# frame_folder = sorted(glob.glob(scene_folder + '*.png')) # ex) ['00000.png',...,'00123.png']
# for idx in range(0, len(frame_folder)):
# if idx == len(frame_folder) - 1:
# break
# I0I1It_paths = []
# I0I1It_paths.append(frame_folder[idx]) # I0 (fix)
# I0I1It_paths.append(frame_folder[idx + 1]) # I1 (fix)
# target_t_Idx = frame_folder[idx].split('/')[-1].split('.')[0]+'_x2.png'
# # ex) target t name: 00017.png => '00017_1.png'
# I0I1It_paths.append(os.path.join(scene_folder, target_t_Idx)) # It
# I0I1It_paths.append(0.5) # t
# I0I1It_paths.append(frame_folder[idx].split(os.path.join(dir, ''))[-1].split('/')[0]) # scene1
# testPath.append(I0I1It_paths)
# for asdf in testPath:
# print(asdf)
# return testPath
class Custom_Test(data.Dataset):
def __init__(self, args, multiple):
self.args = args
self.multiple = multiple
self.testPath = make_2D_dataset_Custom_Test(self.args.custom_path, self.multiple)
self.nIterations = len(self.testPath)
# Raise error if no images found in test_data_path.
if len(self.testPath) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + self.args.custom_path + "\n"))
def __getitem__(self, idx):
I0, I1, It, t_value, scene_name = self.testPath[idx]
dummy_dir = I1 # due to there is not ground truth intermediate frame.
I0I1It_Path = [I0, I1, dummy_dir]
frames = frames_loader_test(self.args, I0I1It_Path, None)
# including "np2Tensor [-1,1] normalized"
I0_path = I0.split(os.sep)[-1]
I1_path = I1.split(os.sep)[-1]
It_path = It.split(os.sep)[-1]
return frames, np.expand_dims(np.array(t_value, dtype=np.float32), 0), scene_name, [It_path, I0_path, I1_path]
def __len__(self):
return self.nIterations
class L1_Charbonnier_loss(nn.Module):
"""L1 Charbonnierloss."""
def __init__(self):
super(L1_Charbonnier_loss, self).__init__()
self.epsilon = 1e-3
def forward(self, X, Y):
loss = torch.mean(torch.sqrt((X - Y) ** 2 + self.epsilon ** 2))
return loss
def set_rec_loss(args):
loss_type = args.loss_type
if loss_type == 'MSE':
lossfunction = nn.MSELoss()
elif loss_type == 'L1':
lossfunction = nn.L1Loss()
elif loss_type == 'L1_Charbonnier_loss':
lossfunction = L1_Charbonnier_loss()
return lossfunction
class AverageClass(object):
""" For convenience of averaging values """
""" refer from "https://github.com/pytorch/examples/blob/master/imagenet/main.py" """
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1.0):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} (avg:{avg' + self.fmt + '})'
# Accm_Time[s]: 1263.517 (avg:639.701) (<== if AverageClass('Accm_Time[s]:', ':6.3f'))
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
""" For convenience of printing diverse values by using "AverageClass" """
""" refer from "https://github.com/pytorch/examples/blob/master/imagenet/main.py" """
def __init__(self, num_batches, *meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def print(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
# # Epoch: [0][ 0/196]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def metrics_evaluation_X_Test(pred_save_path, test_data_path, metrics_types, flow_flag=False, multiple=8, server=None):
"""
pred_save_path = './test_img_dir/XVFInet_exp1/epoch_00099' when 'args.epochs=100'
test_data_path = ex) 'F:/Jihyong/4K_1000fps_dataset/VIC_4K_1000FPS/X_TEST'
format: -type1
-scene1
:
-scene5
-type2
:
-type3
:
-scene5
"metrics_types": ["PSNR", "SSIM", "LPIPS", "tOF", "tLP100"]
"flow_flag": option for saving motion visualization
"final_test_type": ['first_interval', 1, 2, 3, 4]
"multiple": x4, x8, x16, x32 for interpolation
"""
pred_framesPath = []
for type_folder in sorted(glob.glob(os.path.join(pred_save_path, '*', ''))): # [type1,type2,type3,...]
for scene_folder in sorted(glob.glob(os.path.join(type_folder, '*', ''))): # [scene1,scene2,..]
scene_framesPath = []
for frame_path in sorted(glob.glob(scene_folder + '*.png')):
scene_framesPath.append(frame_path)
pred_framesPath.append(scene_framesPath)
if len(pred_framesPath) == 0:
raise (RuntimeError("Found 0 files in " + pred_save_path + "\n"))
# GT_framesPath = make_2D_dataset_X_Test(test_data_path, multiple, t_step_size=32)
# pred_framesPath = make_2D_dataset_X_Test(pred_save_path, multiple, t_step_size=32)
# ex) pred_save_path: './test_img_dir/XVFInet_exp1/epoch_00099' when 'args.epochs=100'
# ex) framesPath: [['./VIC_4K_1000FPS/VIC_Test/Fast/003_TEST_Fast/00000.png',...], ..., []] 2D List, len=30
# ex) scenesFolder: ['Fast/003_TEST_Fast',...]
keys = metrics_types
len_dict = dict.fromkeys(keys, 0)
Total_avg_dict = dict.fromkeys(["TotalAvg_" + _ for _ in keys], 0)
Type1_dict = dict.fromkeys(["Type1Avg_" + _ for _ in keys], 0)
Type2_dict = dict.fromkeys(["Type2Avg_" + _ for _ in keys], 0)
Type3_dict = dict.fromkeys(["Type3Avg_" + _ for _ in keys], 0)
# LPIPSnet = dm.DistModel()
# LPIPSnet.initialize(model='net-lin', net='alex', use_gpu=True)
total_list_dict = {}
key_str = 'Metrics -->'
for key_i in keys:
total_list_dict[key_i] = []
key_str += ' ' + str(key_i)
key_str += ' will be measured.'
print(key_str)
for scene_idx, scene_folder in enumerate(pred_framesPath):
per_scene_list_dict = {}
for key_i in keys:
per_scene_list_dict[key_i] = []
pred_candidate = pred_framesPath[scene_idx] # get all frames in pred_framesPath
# GT_candidate = GT_framesPath[scene_idx] # get 4800 frames
# num_pred_frame_per_folder = len(pred_candidate)
# save_path = os.path.join(pred_save_path, pred_scenesFolder[scene_idx])
save_path = scene_folder[0]
# './test_img_dir/XVFInet_exp1/epoch_00099/type1/scene1'
# excluding both frame0 and frame1 (multiple of 32 indices)
for frameIndex, pred_frame in enumerate(pred_candidate):
# if server==87:
# GTinterFrameIdx = pred_frame.split('/')[-1] # ex) 8, when multiple = 4, # 87 server
# else:
# GTinterFrameIdx = pred_frame.split('\\')[-1] # ex) 8, when multiple = 4
# if not (GTinterFrameIdx % 32) == 0:
if frameIndex > 0 and frameIndex < multiple:
""" only compute predicted frames (excluding multiples of 32 indices), ex) 8, 16, 24, 40, 48, 56, ... """
output_img = cv2.imread(pred_frame).astype(np.float32) # BGR, [0,255]
target_img = cv2.imread(pred_frame.replace(pred_save_path, test_data_path)).astype(
np.float32) # BGR, [0,255]
pred_frame_split = pred_frame.split(os.sep)
msg = "[x%d] frame %s, " % (
multiple, os.path.join(pred_frame_split[-3], pred_frame_split[-2], pred_frame_split[-1])) # per frame
if "tOF" in keys: # tOF
# if (GTinterFrameIdx % 32) == int(32/multiple):
# if (frameIndex % multiple) == 1:
if frameIndex == 1:
# when first predicted frame in each interval
pre_out_grey = cv2.cvtColor(cv2.imread(pred_candidate[0]).astype(np.float32),
cv2.COLOR_BGR2GRAY) #### CAUTION BRG
# pre_tar_grey = cv2.cvtColor(cv2.imread(pred_candidate[0].replace(pred_save_path, test_data_path)), cv2.COLOR_BGR2GRAY) #### CAUTION BRG
pre_tar_grey = pre_out_grey #### CAUTION BRG
# if not H_match_flag or not W_match_flag:
# pre_tar_grey = pre_tar_grey[:new_t_H, :new_t_W, :]
# pre_tar_grey = pre_out_grey
output_grey = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
target_grey = cv2.cvtColor(target_img, cv2.COLOR_BGR2GRAY)
target_OF = cv2.calcOpticalFlowFarneback(pre_tar_grey, target_grey, None, 0.5, 3, 15, 3, 5, 1.2, 0)
output_OF = cv2.calcOpticalFlowFarneback(pre_out_grey, output_grey, None, 0.5, 3, 15, 3, 5, 1.2, 0)
# target_OF, ofy, ofx = crop_8x8(target_OF) #check for size reason
# output_OF, ofy, ofx = crop_8x8(output_OF)
OF_diff = np.absolute(target_OF - output_OF)
if flow_flag:
""" motion visualization """
flow_path = save_path + '_tOF_flow'
check_folder(flow_path)
# './test_img_dir/XVFInet_exp1/epoch_00099/Fast/003_TEST_Fast_tOF_flow'
tOFpath = os.path.join(flow_path, "tOF_flow_%05d.png" % (GTinterFrameIdx))
# ex) "./test_img_dir/epoch_005/Fast/003_TEST_Fast/00008_tOF" when start_idx=0, multiple=4, frameIndex=0
hsv = np.zeros_like(output_img) # check for size reason
hsv[..., 1] = 255
mag, ang = cv2.cartToPolar(OF_diff[..., 0], OF_diff[..., 1])
# print("tar max %02.6f, min %02.6f, avg %02.6f" % (mag.max(), mag.min(), mag.mean()))
maxV = 0.4
mag = np.clip(mag, 0.0, maxV) / maxV
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = mag * 255.0 #
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
cv2.imwrite(tOFpath, bgr)
print("png for motion visualization has been saved in [%s]" %
(flow_path))
OF_diff_tmp = np.sqrt(np.sum(OF_diff * OF_diff, axis=-1)).mean() # l1 vector norm
# OF_diff, ofy, ofx = crop_8x8(OF_diff)
total_list_dict["tOF"].append(OF_diff_tmp)
per_scene_list_dict["tOF"].append(OF_diff_tmp)
msg += "tOF %02.2f, " % (total_list_dict["tOF"][-1])
pre_out_grey = output_grey
pre_tar_grey = target_grey
# target_img, ofy, ofx = crop_8x8(target_img)
# output_img, ofy, ofx = crop_8x8(output_img)
if "PSNR" in keys: # psnr
psnr_tmp = psnr(target_img, output_img)
total_list_dict["PSNR"].append(psnr_tmp)
per_scene_list_dict["PSNR"].append(psnr_tmp)
msg += "PSNR %02.2f" % (total_list_dict["PSNR"][-1])
if "SSIM" in keys: # ssim
ssim_tmp = ssim_bgr(target_img, output_img)
total_list_dict["SSIM"].append(ssim_tmp)
per_scene_list_dict["SSIM"].append(ssim_tmp)
msg += ", SSIM %02.2f" % (total_list_dict["SSIM"][-1])
# msg += ", crop (%d, %d)" % (ofy, ofx) # per frame (not scene)
print(msg)
""" after finishing one scene """
per_scene_pd_dict = {} # per scene
for cur_key in keys:
# save_path = './test_img_dir/XVFInet_exp1/epoch_00099/Fast/003_TEST_Fast'
num_data = cur_key + "_[x%d]_[%s]" % (multiple, save_path.split(os.sep)[-2]) # '003_TEST_Fast'
# num_data => ex) PSNR_[x8]_[041_TEST_Fast]
""" per scene """
per_scene_cur_list = np.float32(per_scene_list_dict[cur_key])
per_scene_pd_dict[num_data] = pd.Series(per_scene_cur_list) # dictionary
per_scene_num_data_sum = per_scene_cur_list.sum()
per_scene_num_data_len = per_scene_cur_list.shape[0]
per_scene_num_data_mean = per_scene_num_data_sum / per_scene_num_data_len
""" accumulation """
cur_list = np.float32(total_list_dict[cur_key])
num_data_sum = cur_list.sum()
num_data_len = cur_list.shape[0] # accum
num_data_mean = num_data_sum / num_data_len
print(" %s, (per scene) max %02.4f, min %02.4f, avg %02.4f" %
(num_data, per_scene_cur_list.max(), per_scene_cur_list.min(), per_scene_num_data_mean)) #
Total_avg_dict["TotalAvg_" + cur_key] = num_data_mean # accum, update every iteration.
len_dict[cur_key] = num_data_len # accum, update every iteration.
# folder_dict["FolderAvg_" + cur_key] += num_data_mean
if scene_idx < 5:
Type1_dict["Type1Avg_" + cur_key] += per_scene_num_data_mean
elif (scene_idx >= 5) and (scene_idx < 10):
Type2_dict["Type2Avg_" + cur_key] += per_scene_num_data_mean
elif (scene_idx >= 10) and (scene_idx < 15):
Type3_dict["Type3Avg_" + cur_key] += per_scene_num_data_mean
mode = 'w' if scene_idx == 0 else 'a'
total_csv_path = os.path.join(pred_save_path, "total_metrics.csv")
# ex) pred_save_path: './test_img_dir/XVFInet_exp1/epoch_00099' when 'args.epochs=100'
pd.DataFrame(per_scene_pd_dict).to_csv(total_csv_path, mode=mode)
""" combining all results after looping all scenes. """
for key in keys:
Total_avg_dict["TotalAvg_" + key] = pd.Series(
np.float32(Total_avg_dict["TotalAvg_" + key])) # replace key (update)
Type1_dict["Type1Avg_" + key] = pd.Series(np.float32(Type1_dict["Type1Avg_" + key] / 5)) # replace key (update)
Type2_dict["Type2Avg_" + key] = pd.Series(np.float32(Type2_dict["Type2Avg_" + key] / 5)) # replace key (update)
Type3_dict["Type3Avg_" + key] = pd.Series(np.float32(Type3_dict["Type3Avg_" + key] / 5)) # replace key (update)
print("%s, total frames %d, total avg %02.4f, Type1 avg %02.4f, Type2 avg %02.4f, Type3 avg %02.4f" %
(key, len_dict[key], Total_avg_dict["TotalAvg_" + key],
Type1_dict["Type1Avg_" + key], Type2_dict["Type2Avg_" + key], Type3_dict["Type3Avg_" + key]))
pd.DataFrame(Total_avg_dict).to_csv(total_csv_path, mode='a')
pd.DataFrame(Type1_dict).to_csv(total_csv_path, mode='a')
pd.DataFrame(Type2_dict).to_csv(total_csv_path, mode='a')
pd.DataFrame(Type3_dict).to_csv(total_csv_path, mode='a')
print("csv file of all metrics for all scenes has been saved in [%s]" %
(total_csv_path))
print("Finished.")
def to_uint8(x, vmin, vmax):
##### color space transform, originally from https://github.com/yhjo09/VSR-DUF #####
x = x.astype('float32')
x = (x - vmin) / (vmax - vmin) * 255 # 0~255
return np.clip(np.round(x), 0, 255)
def psnr(img_true, img_pred):
##### PSNR with color space transform, originally from https://github.com/yhjo09/VSR-DUF #####
"""
# img format : [h,w,c], RGB
"""
# Y_true = _rgb2ycbcr(to_uint8(img_true, 0, 255), 255)[:, :, 0]
# Y_pred = _rgb2ycbcr(to_uint8(img_pred, 0, 255), 255)[:, :, 0]
diff = img_true - img_pred
rmse = np.sqrt(np.mean(np.power(diff, 2)))
if rmse == 0:
return float('inf')
return 20 * np.log10(255. / rmse)
def ssim_bgr(img_true, img_pred): ##### SSIM for BGR, not RGB #####
"""
# img format : [h,w,c], BGR
"""
Y_true = _rgb2ycbcr(to_uint8(img_true, 0, 255)[:, :, ::-1], 255)[:, :, 0]
Y_pred = _rgb2ycbcr(to_uint8(img_pred, 0, 255)[:, :, ::-1], 255)[:, :, 0]
# return compare_ssim(Y_true, Y_pred, data_range=Y_pred.max() - Y_pred.min())
return structural_similarity(Y_true, Y_pred, data_range=Y_pred.max() - Y_pred.min())
def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
# [0,255]2[-1,1]2[1,3,H,W]-shaped
def denorm255(x):
out = (x + 1.0) / 2.0
return out.clamp_(0.0, 1.0) * 255.0
def denorm255_np(x):
# numpy
out = (x + 1.0) / 2.0
return out.clip(0.0, 1.0) * 255.0
def _rgb2ycbcr(img, maxVal=255):
##### color space transform, originally from https://github.com/yhjo09/VSR-DUF #####
O = np.array([[16],
[128],
[128]])
T = np.array([[0.256788235294118, 0.504129411764706, 0.097905882352941],
[-0.148223529411765, -0.290992156862745, 0.439215686274510],
[0.439215686274510, -0.367788235294118, -0.071427450980392]])
if maxVal == 1:
O = O / 255.0
t = np.reshape(img, (img.shape[0] * img.shape[1], img.shape[2]))
t = np.dot(t, np.transpose(T))
t[:, 0] += O[0]
t[:, 1] += O[1]
t[:, 2] += O[2]
ycbcr = np.reshape(t, [img.shape[0], img.shape[1], img.shape[2]])
return ycbcr
class set_smoothness_loss(nn.Module):
def __init__(self, weight=150.0, edge_aware=True):
super(set_smoothness_loss, self).__init__()
self.edge_aware = edge_aware
self.weight = weight ** 2
def forward(self, flow, img):
img_gh = torch.mean(torch.pow((img[:, :, 1:, :] - img[:, :, :-1, :]), 2), dim=1, keepdims=True)
img_gw = torch.mean(torch.pow((img[:, :, :, 1:] - img[:, :, :, :-1]), 2), dim=1, keepdims=True)
weight_gh = torch.exp(-self.weight * img_gh)
weight_gw = torch.exp(-self.weight * img_gw)
flow_gh = torch.abs(flow[:, :, 1:, :] - flow[:, :, :-1, :])
flow_gw = torch.abs(flow[:, :, :, 1:] - flow[:, :, :, :-1])
if self.edge_aware:
return (torch.mean(weight_gh * flow_gh) + torch.mean(weight_gw * flow_gw)) * 0.5
else:
return (torch.mean(flow_gh) + torch.mean(flow_gw)) * 0.5
def get_batch_images(args, save_img_num, save_images): ## For visualization during training phase
width_num = len(save_images)
log_img = np.zeros((save_img_num * args.patch_size, width_num * args.patch_size, 3), dtype=np.uint8)
pred_frameT, pred_coarse_flow, pred_fine_flow, frameT, simple_mean, occ_map = save_images
for b in range(save_img_num):
output_img_tmp = denorm255(pred_frameT[b, :])
output_coarse_flow_tmp = pred_coarse_flow[b, :2, :, :]
output_fine_flow_tmp = pred_fine_flow[b, :2, :, :]
gt_img_tmp = denorm255(frameT[b, :])
simple_mean_img_tmp = denorm255(simple_mean[b, :])
occ_map_tmp = occ_map[b, :]
output_img_tmp = np.transpose(output_img_tmp.detach().cpu().numpy(), [1, 2, 0]).astype(np.uint8)
output_coarse_flow_tmp = flow2img(np.transpose(output_coarse_flow_tmp.detach().cpu().numpy(), [1, 2, 0]))
output_fine_flow_tmp = flow2img(np.transpose(output_fine_flow_tmp.detach().cpu().numpy(), [1, 2, 0]))
gt_img_tmp = np.transpose(gt_img_tmp.detach().cpu().numpy(), [1, 2, 0]).astype(np.uint8)
simple_mean_img_tmp = np.transpose(simple_mean_img_tmp.detach().cpu().numpy(), [1, 2, 0]).astype(np.uint8)
occ_map_tmp = np.transpose(occ_map_tmp.detach().cpu().numpy() * 255.0, [1, 2, 0]).astype(np.uint8)
occ_map_tmp = np.concatenate([occ_map_tmp, occ_map_tmp, occ_map_tmp], axis=2)
log_img[(b) * args.patch_size:(b + 1) * args.patch_size, 0 * args.patch_size:1 * args.patch_size,
:] = simple_mean_img_tmp
log_img[(b) * args.patch_size:(b + 1) * args.patch_size, 1 * args.patch_size:2 * args.patch_size,
:] = output_img_tmp
log_img[(b) * args.patch_size:(b + 1) * args.patch_size, 2 * args.patch_size:3 * args.patch_size,
:] = gt_img_tmp
log_img[(b) * args.patch_size:(b + 1) * args.patch_size, 3 * args.patch_size:4 * args.patch_size,
:] = output_coarse_flow_tmp
log_img[(b) * args.patch_size:(b + 1) * args.patch_size, 4 * args.patch_size:5 * args.patch_size,
:] = output_fine_flow_tmp
log_img[(b) * args.patch_size:(b + 1) * args.patch_size, 5 * args.patch_size:6 * args.patch_size,
:] = occ_map_tmp
return log_img
def flow2img(flow, logscale=True, scaledown=6, output=False):
"""
topleft is zero, u is horiz, v is vertical
red is 3 o'clock, yellow is 6, light blue is 9, blue/purple is 12
"""
u = flow[:, :, 1]
# u = flow[:, :, 0]
v = flow[:, :, 0]
# v = flow[:, :, 1]
colorwheel = makecolorwheel()
ncols = colorwheel.shape[0]
radius = np.sqrt(u ** 2 + v ** 2)
if output:
print("Maximum flow magnitude: %04f" % np.max(radius))
if logscale:
radius = np.log(radius + 1)
if output:
print("Maximum flow magnitude (after log): %0.4f" % np.max(radius))
radius = radius / scaledown
if output:
print("Maximum flow magnitude (after scaledown): %0.4f" % np.max(radius))
# rot = np.arctan2(-v, -u) / np.pi
rot = np.arctan2(v, u) / np.pi
fk = (rot + 1) / 2 * (ncols - 1) # -1~1 maped to 0~ncols
k0 = fk.astype(np.uint8) # 0, 1, 2, ..., ncols
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
ncolors = colorwheel.shape[1]
img = np.zeros(u.shape + (ncolors,))
for i in range(ncolors):
tmp = colorwheel[:, i]
col0 = tmp[k0]
col1 = tmp[k1]
col = (1 - f) * col0 + f * col1
idx = radius <= 1
# increase saturation with radius
col[idx] = 1 - radius[idx] * (1 - col[idx])
# out of range
col[~idx] *= 0.75
# img[:,:,i] = np.floor(255*col).astype(np.uint8)
img[:, :, i] = np.clip(255 * col, 0.0, 255.0).astype(np.uint8)
# return img.astype(np.uint8)
return img
def makecolorwheel():
# Create a colorwheel for visualization
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[col:col + RY, 0] = 1
colorwheel[col:col + RY, 1] = np.arange(0, 1, 1. / RY)
col += RY
# YG
colorwheel[col:col + YG, 0] = np.arange(1, 0, -1. / YG)
colorwheel[col:col + YG, 1] = 1
col += YG
# GC
colorwheel[col:col + GC, 1] = 1
colorwheel[col:col + GC, 2] = np.arange(0, 1, 1. / GC)
col += GC
# CB
colorwheel[col:col + CB, 1] = np.arange(1, 0, -1. / CB)
colorwheel[col:col + CB, 2] = 1
col += CB
# BM
colorwheel[col:col + BM, 2] = 1
colorwheel[col:col + BM, 0] = np.arange(0, 1, 1. / BM)
col += BM
# MR
colorwheel[col:col + MR, 2] = np.arange(1, 0, -1. / MR)
colorwheel[col:col + MR, 0] = 1
return colorwheel