forked from luanti-org/luanti
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraycast.cpp
158 lines (136 loc) · 4.45 KB
/
raycast.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
Minetest
Copyright (C) 2016 juhdanad, Daniel Juhasz <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "raycast.h"
#include "irr_v3d.h"
#include "irr_aabb3d.h"
#include <quaternion.h>
#include "constants.h"
bool RaycastSort::operator() (const PointedThing &pt1,
const PointedThing &pt2) const
{
// "nothing" cannot be sorted
assert(pt1.type != POINTEDTHING_NOTHING);
assert(pt2.type != POINTEDTHING_NOTHING);
f32 pt1_distSq = pt1.distanceSq;
// Add some bonus when one of them is an object
if (pt1.type != pt2.type) {
if (pt1.type == POINTEDTHING_OBJECT)
pt1_distSq -= BS * BS;
else if (pt2.type == POINTEDTHING_OBJECT)
pt1_distSq += BS * BS;
}
// returns false if pt1 is nearer than pt2
if (pt1_distSq < pt2.distanceSq) {
return false;
}
if (pt1_distSq == pt2.distanceSq) {
// Sort them to allow only one order
if (pt1.type == POINTEDTHING_OBJECT)
return (pt2.type == POINTEDTHING_OBJECT
&& pt1.object_id < pt2.object_id);
return (pt2.type == POINTEDTHING_OBJECT
|| pt1.node_undersurface < pt2.node_undersurface);
}
return true;
}
RaycastState::RaycastState(const core::line3d<f32> &shootline,
bool objects_pointable, bool liquids_pointable) :
m_shootline(shootline),
m_iterator(shootline.start / BS, shootline.getVector() / BS),
m_previous_node(m_iterator.m_current_node_pos),
m_objects_pointable(objects_pointable),
m_liquids_pointable(liquids_pointable)
{
}
bool boxLineCollision(const aabb3f &box, const v3f &start,
const v3f &dir, v3f *collision_point, v3f *collision_normal)
{
if (box.isPointInside(start)) {
*collision_point = start;
collision_normal->set(0, 0, 0);
return true;
}
float m = 0;
// Test X collision
if (dir.X != 0) {
if (dir.X > 0)
m = (box.MinEdge.X - start.X) / dir.X;
else
m = (box.MaxEdge.X - start.X) / dir.X;
if (m >= 0 && m <= 1) {
*collision_point = start + dir * m;
if ((collision_point->Y >= box.MinEdge.Y)
&& (collision_point->Y <= box.MaxEdge.Y)
&& (collision_point->Z >= box.MinEdge.Z)
&& (collision_point->Z <= box.MaxEdge.Z)) {
collision_normal->set((dir.X > 0) ? -1 : 1, 0, 0);
return true;
}
}
}
// Test Y collision
if (dir.Y != 0) {
if (dir.Y > 0)
m = (box.MinEdge.Y - start.Y) / dir.Y;
else
m = (box.MaxEdge.Y - start.Y) / dir.Y;
if (m >= 0 && m <= 1) {
*collision_point = start + dir * m;
if ((collision_point->X >= box.MinEdge.X)
&& (collision_point->X <= box.MaxEdge.X)
&& (collision_point->Z >= box.MinEdge.Z)
&& (collision_point->Z <= box.MaxEdge.Z)) {
collision_normal->set(0, (dir.Y > 0) ? -1 : 1, 0);
return true;
}
}
}
// Test Z collision
if (dir.Z != 0) {
if (dir.Z > 0)
m = (box.MinEdge.Z - start.Z) / dir.Z;
else
m = (box.MaxEdge.Z - start.Z) / dir.Z;
if (m >= 0 && m <= 1) {
*collision_point = start + dir * m;
if ((collision_point->X >= box.MinEdge.X)
&& (collision_point->X <= box.MaxEdge.X)
&& (collision_point->Y >= box.MinEdge.Y)
&& (collision_point->Y <= box.MaxEdge.Y)) {
collision_normal->set(0, 0, (dir.Z > 0) ? -1 : 1);
return true;
}
}
}
return false;
}
bool boxLineCollision(const aabb3f &box, const v3f &rotation,
const v3f &start, const v3f &dir,
v3f *collision_point, v3f *collision_normal, v3f *raw_collision_normal)
{
// Inversely transform the ray rather than rotating the box faces;
// this allows us to continue using a simple ray - AABB intersection
core::quaternion rot(rotation * core::DEGTORAD);
rot.makeInverse();
bool collision = boxLineCollision(box, rot * start, rot * dir, collision_point, collision_normal);
if (!collision) return collision;
// Transform the results back
rot.makeInverse();
*collision_point = rot * *collision_point;
*raw_collision_normal = *collision_normal;
*collision_normal = rot * *collision_normal;
return collision;
}