forked from lukas-blecher/LaTeX-OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
283 lines (243 loc) · 11.7 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import re
from typing import Tuple
from Levenshtein import distance
import cv2
from matplotlib import pyplot as plt
import pix2tex.utils as p2t_utils
import pix2tex.models as p2t_models
import yaml
from munch import Munch
import torch
from pix2tex.dataset.dataset import Im2LatexDataset
import numpy as np
from collections import defaultdict
from pix2tex.eval import detokenize
from torchtext.data import metrics
from pix2tex.utils.utils import alternatives, post_process, token2str
from tqdm import tqdm
from pix2tex import multiline_utils
from pix2tex.cli import minmax_size
from PIL import Image
# CONFIG_PATH = "pix2tex/model/settings/config.yaml"
# BATCHSIZE = 1
# TEMPERATURE = .9
# CHECKPOINT_PATH = "hw_checkpoints/handwritten_training/handwritten_training_e19_step63.pth"
# DEVICE = "cpu"
# DATA_PATH = "pix2tex/dataset/handwritten/test.pkl"
def get_model_and_data(config_path, checkpoint_path, data_path, batch_size=1, temperature=.2, device="cpu"):
"""
Get the model and data for evaluation, along with configuration arguments.
Inputs:
config_path (str): path to the configuration file
batch_size (int): batch size for evaluation
temperature (float): temperature for evaluation
checkpoint_path (str): path to the model checkpoint
device (str): device to run the model on
data_path (str): path to the data
Returns:
Tuple[torch.nn.Module, Im2LatexDataset, Munch]: model, dataset, arguments
"""
with open(config_path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
args = p2t_utils.parse_args(Munch(config))
args.testbatchsize = batch_size
args.wandb = False
args.temperature = temperature
model = p2t_models.get_model(args)
model.load_state_dict(torch.load(checkpoint_path, device))
dataset = Im2LatexDataset(pad=True).load(data_path)
valargs = args.copy()
valargs.update(batchsize=args.testbatchsize, keep_smaller_batches=True, test=True)
dataset.update(**valargs)
return model, dataset, args
def extraer_numero(texto):
"""
Función para extraer el primer número encontrado en una cadena de texto.
Parámetros:
- texto (str): La cadena de texto de la cual extraer el número.
Retorna:
- str: El primer número encontrado en la cadena de texto.
- None: Si no se encuentra ningún número.
"""
# Utilizar expresión regular para encontrar todos los números en la cadena
numeros = re.findall(r'\d+', texto)
# Asumiendo que solo hay un número en la cadena, obtener el primer resultado
numero = numeros[0] if numeros else None
return numeros
def evaluate(model, dataset: Im2LatexDataset, args: Munch, num_batches: int = None):
"""evaluates the model. Returns bleu score on the dataset
Args:
model (torch.nn.Module): the model
dataset (Im2LatexDataset): test dataset
args (Munch): arguments
num_batches (int): How many batches to evaluate on. Defaults to None (all batches).
name (str, optional): name of the test e.g. val or test for wandb. Defaults to 'test'.
Returns:
Tuple[float, float, float]: BLEU score of validation set, normed edit distance, token accuracy
"""
assert len(dataset) > 0
device = args.device
bleus, edit_dists, token_acc = [], [], []
bleu_score, edit_distance, token_accuracy = 0, 1, 0
iter_ds = iter(dataset)
pbar = tqdm(enumerate(iter_ds), total=len(dataset))
preds = defaultdict(list)
pred_truth = defaultdict(list)
for i, (seq, im) in pbar:
if seq is None or im is None:
continue
#loss = decoder(tgt_seq, mask=tgt_mask, context=encoded)
dec = model.generate(im.to(device), temperature=args.get('temperature', .2))
pred = detokenize(dec, dataset.tokenizer)
tokenized_pred = token2str(dec, dataset.tokenizer)
preds[i].append(pred)
truth = detokenize(seq['input_ids'], dataset.tokenizer)
tokenized_truth = token2str(seq['input_ids'], dataset.tokenizer)
bleus.append(metrics.bleu_score(pred, [alternatives(x) for x in truth]))
for predi, truthi in zip(token2str(dec, dataset.tokenizer), token2str(seq['input_ids'], dataset.tokenizer)):
ts = post_process(truthi)
if len(ts) > 0:
edit_dist = distance(post_process(predi), ts)/len(ts)
edit_dists.append(distance(post_process(predi), ts)/len(ts))
dec = dec.cpu()
tgt_seq = seq['input_ids'][:, 1:]
shape_diff = dec.shape[1]-tgt_seq.shape[1]
if shape_diff < 0:
dec = torch.nn.functional.pad(dec, (0, -shape_diff), "constant", args.pad_token)
elif shape_diff > 0:
tgt_seq = torch.nn.functional.pad(tgt_seq, (0, shape_diff), "constant", args.pad_token)
mask = torch.logical_or(tgt_seq != args.pad_token, dec != args.pad_token)
tok_acc = (dec == tgt_seq)[mask].float().mean().item()
token_acc.append(tok_acc)
pbar.set_description('BLEU: %.3f, ED: %.2e, ACC: %.3f' % (np.mean(bleus), np.mean(edit_dists), np.mean(token_acc)))
#Busco el nombre de la imagen
batch = iter_ds.pairs[iter_ds.i - 1]
_,ims=batch.T
label = extraer_numero(ims[0])[1]
pred_truth[label] = {'predicted': tokenized_pred,
'truth':tokenized_truth,
'pred_tokens':pred,
'truth_tokens':truth,
'bleu':bleu_score,
'edit_dist': edit_dist,
'token acc':tok_acc}
if num_batches is not None and i >= num_batches:
break
if len(bleus) > 0:
bleu_score = np.mean(bleus)
if len(edit_dists) > 0:
edit_distance = np.mean(edit_dists)
if len(token_acc) > 0:
token_accuracy = np.mean(token_acc)
print('\n%s\n%s' % (truth, pred))
print('BLEU: %.2f' % bleu_score)
return bleu_score, edit_distance, token_accuracy, bleus, edit_dists, token_acc, pred_truth
def parse_prediction(pred):
pred = np.array(pred).squeeze()
return ''.join(pred)
def resize_line(img: np.ndarray, max_dimensions: Tuple[int, int] = None, min_dimensions: Tuple[int, int] = None) -> np.ndarray:
"""Resize or pad an image to fit into given dimensions
Args:
img (np.ndarray): Image to scale up/down.
max_dimensions (Tuple[int, int], optional): Maximum dimensions. Defaults to None.
min_dimensions (Tuple[int, int], optional): Minimum dimensions. Defaults to None.
Returns:
np.ndarray: Image with correct dimensionality
"""
if max_dimensions is not None:
ratios = [a/b for a, b in zip(img.shape[:2][::-1], max_dimensions)]
if any([r > 1 for r in ratios]):
size = np.array(img.shape[:2][::-1])//max(ratios)
img = cv2.resize(img, tuple(size.astype(int)), interpolation=cv2.INTER_LINEAR)
if min_dimensions is not None:
# hypothesis: there is a dim in img smaller than min_dimensions, and return a proper dim >= min_dimensions
padded_size = [max(img_dim, min_dim) for img_dim, min_dim in zip(img.shape[:2][::-1], min_dimensions)]
if padded_size != list(img.shape[:2][::-1]): # assert hypothesis
padded_im = np.full((*padded_size[::-1], img.shape[2]), 255, dtype=np.float32) if len(img.shape) == 3 else np.full(padded_size[::-1], 255, dtype=np.float32)
y_offset = (padded_im.shape[0] - img.shape[0]) // 2
x_offset = (padded_im.shape[1] - img.shape[1]) // 2
padded_im[y_offset:y_offset+img.shape[0], x_offset:x_offset+img.shape[1]] = img
img = padded_im
return img
def evaluate_multiline(model, dataset: Im2LatexDataset, args: Munch, candidate_sizes: list, num_batches: int = None):
"""evaluates the model. Returns bleu score on the dataset
Args:
model (torch.nn.Module): the model
dataset (Im2LatexDataset): test dataset
args (Munch): arguments
num_batches (int): How many batches to evaluate on. Defaults to None (all batches).
name (str, optional): name of the test e.g. val or test for wandb. Defaults to 'test'.
Returns:
Tuple[float, float, float]: BLEU score of validation set, normed edit distance, token accuracy
"""
assert len(dataset) > 0
device = args.device
bleus, edit_dists, token_acc = [], [], []
bleu_score, edit_distance, token_accuracy = 0, 1, 0
iter_ds = iter(dataset)
pbar = tqdm(enumerate(iter_ds), total=len(dataset))
preds = defaultdict(list)
pred_truth = defaultdict(list)
for i, (seq, im) in pbar:
if seq is None or im is None:
continue
pre_split_img = multiline_utils.ImageTensor(im.squeeze(0), th=0, candidate_sizes=candidate_sizes)
lines = pre_split_img.split_img_into_lines()
print("detected lines --> ", len(lines))
# compute inference over multiple lines
# pred = []
running_line_pred = []
for line in lines:
# to_pred = resize_line(line, max_dimensions=dataset.max_dimensions, min_dimensions=dataset.min_dimensions)
to_pred = line.unsqueeze(0)
dec = model.generate(to_pred.to(device), temperature=args.get('temperature', .2))
detok_dec = detokenize(dec, dataset.tokenizer)
print("Len detok_dec --> ", len(detok_dec))
print("Len detok_dec @ index 0--> ", len(detok_dec[0]))
running_line_pred.extend(detok_dec[0])
print("Len runnig pred --> ", len(running_line_pred))
pred = [running_line_pred]
tokenized_pred = None
preds[i].append(pred)
truth = detokenize(seq['input_ids'], dataset.tokenizer)
print("Len of truth --> ", len(truth))
tokenized_truth = token2str(seq['input_ids'], dataset.tokenizer)
bleus.append(metrics.bleu_score(pred, [alternatives(x) for x in truth]))
for predi, truthi in zip(token2str(dec, dataset.tokenizer), token2str(seq['input_ids'], dataset.tokenizer)):
ts = post_process(truthi)
if len(ts) > 0:
edit_dist = distance(post_process(predi), ts)/len(ts)
edit_dists.append(distance(post_process(predi), ts)/len(ts))
dec = dec.cpu()
tgt_seq = seq['input_ids'][:, 1:]
shape_diff = dec.shape[1]-tgt_seq.shape[1]
if shape_diff < 0:
dec = torch.nn.functional.pad(dec, (0, -shape_diff), "constant", args.pad_token)
elif shape_diff > 0:
tgt_seq = torch.nn.functional.pad(tgt_seq, (0, shape_diff), "constant", args.pad_token)
mask = torch.logical_or(tgt_seq != args.pad_token, dec != args.pad_token)
tok_acc = (dec == tgt_seq)[mask].float().mean().item()
token_acc.append(tok_acc)
pbar.set_description('BLEU: %.3f, ED: %.2e, ACC: %.3f' % (np.mean(bleus), np.mean(edit_dists), np.mean(token_acc)))
#Busco el nombre de la imagen
batch = iter_ds.pairs[iter_ds.i - 1]
_,ims=batch.T
label = extraer_numero(ims[0])[1]
pred_truth[label] = {'predicted': tokenized_pred,
'truth':tokenized_truth,
'pred_tokens':pred,
'truth_tokens':truth,
'bleu':bleu_score,
'edit_dist': edit_dist,
'token acc':tok_acc}
if num_batches is not None and i >= num_batches:
break
if len(bleus) > 0:
bleu_score = np.mean(bleus)
if len(edit_dists) > 0:
edit_distance = np.mean(edit_dists)
if len(token_acc) > 0:
token_accuracy = np.mean(token_acc)
print('\n%s\n%s' % (truth, pred))
print('BLEU: %.2f' % bleu_score)
return bleu_score, edit_distance, token_accuracy, bleus, edit_dists, token_acc, pred_truth