Skip to content

Latest commit

 

History

History
157 lines (133 loc) · 5.69 KB

README.md

File metadata and controls

157 lines (133 loc) · 5.69 KB

GAU-alpha-pytorch

pytorch版本https://github.com/ZhuiyiTechnology/GAU-alpha

News

  • 2022/05/11 感谢苏神提醒,添加了一个注释,其中RoFormerV2*表示未经多任务学习的RoFormerV2模型。
  • 2022/04/22 初始化仓库,添加初步的代码, 添加paddle版本gau_alpha代码。
  • 2022/04/30 添加CLUE分类任务代码。

Install

pip install git+https://github.com/JunnYu/GAU-alpha-pytorch.git
or
pip install gau_alpha

精度对齐

python compare.py
# bert4keras vs pytorch
# mean diff : tensor(6.9320e-07)
# max diff : tensor(3.9101e-05)

torch版本使用

依赖:

  • torch
  • transformers
import torch
from gau_alpha import GAUAlphaForMaskedLM, GAUAlphaTokenizer

text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = GAUAlphaTokenizer.from_pretrained(
    "junnyu/chinese_GAU-alpha-char_L-24_H-768"
)
pt_model = GAUAlphaForMaskedLM.from_pretrained(
    "junnyu/chinese_GAU-alpha-char_L-24_H-768"
)
pt_model.eval()
pt_inputs = tokenizer(text, return_tensors="pt")

with torch.no_grad():
    pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        val, idx = pt_outputs[i].softmax(-1).topk(k=5)
        tokens = tokenizer.convert_ids_to_tokens(idx)
        new_tokens = []
        for v, t in zip(val.cpu(), tokens):
            new_tokens.append(f"{t}+{round(v.item(),4)}")
        pt_outputs_sentence += "[" + "||".join(new_tokens) + "]"
    else:
        pt_outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
        )
print(pt_outputs_sentence)
# pytorch: 今天[天+0.8657||气+0.0535||阳+0.0165||,+0.0126||晴+0.0111]很好,我[要+0.4619||想+0.4352||又+0.0252||就+0.0157||跑+0.0064]去公园玩。

Paddle版本使用

依赖:

  • paddlepaddle>=2.2.0
  • paddlenlp
import paddle
from transformers import BertTokenizer as GAUAlphaTokenizer
from gau_alpha_paddle import GAUAlphaForMaskedLM

text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = GAUAlphaTokenizer.from_pretrained(
    "junnyu/chinese_GAU-alpha-char_L-24_H-768"
)
pd_model = GAUAlphaForMaskedLM.from_pretrained("chinese_GAU-alpha-char_L-24_H-768")
pd_model.eval()
pd_inputs = tokenizer(text)
pd_inputs = {k: paddle.to_tensor([v]) for k, v in pd_inputs.items()}

with paddle.no_grad():
    pd_outputs = pd_model(**pd_inputs)[0][0]

pd_outputs_sentence = "paddle: "
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        val, idx = paddle.nn.functional.softmax(pd_outputs[i], -1).topk(k=5)
        tokens = tokenizer.convert_ids_to_tokens(idx)
        new_tokens = []
        for v, t in zip(val.cpu(), tokens):
            new_tokens.append(f"{t}+{round(v.item(),4)}")
        pd_outputs_sentence += "[" + "||".join(new_tokens) + "]"
    else:
        pd_outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
        )
print(pd_outputs_sentence)
# paddle: 今天[天+0.8657||气+0.0535||阳+0.0165||,+0.0126||晴+0.0111]很好,我[要+0.4619||想+0.4352||又+0.0252||就+0.0157||跑+0.0064]去公园玩。

介绍

评测对比

CLUE-dev榜单分类任务结果,base版本。

iflytek tnews afqmc cmnli ocnli wsc csl
BERT 60.06 56.80 72.41 79.56 73.93 78.62 83.93
RoBERTa 60.64 58.06 74.05 81.24 76.00 87.50 84.50
RoFormer 60.91 57.54 73.52 80.92 76.07 86.84 84.63
RoFormerV2* 60.87 56.54 72.75 80.34 75.36 80.92 84.67
GAU-α 61.41 57.76 74.17 81.82 75.86 79.93 85.67
RoFormerV2-pytorch 62.87 59.03 76.20 80.85 79.73 87.82 91.87
GAU-α-pytorch(Adafactor) 61.18 57.52 73.42 80.91 75.69 80.59 85.5
GAU-α-pytorch(AdamW wd0.01 warmup0.1) 60.68 57.95 73.08 81.02 75.36 81.25 83.93

CLUE-test榜单分类任务结果,base版本。

iflytek tnews afqmc cmnli ocnli wsc csl
RoFormerV2-pytorch 63.15 58.24 75.42 80.59 74.17 83.79 83.73
GAU-α-pytorch(Adafactor) 61.38 57.08 74.05 80.37 73.53 74.83 85.6
GAU-α-pytorch(AdamW wd0.01 warmup0.1) 60.54 57.67 72.44 80.32 72.97 76.55 84.13

CLUE-dev集榜单阅读理解和NER结果

cmrc2018 c3 chid cluener
BERT 56.17 60.54 85.69 79.45
RoBERTa 56.54 67.66 86.71 79.47
RoFormer 56.26 67.24 86.57 79.72
RoFormerV2* 57.91 64.62 85.09 81.08
GAU-α 58.09 68.24 87.91 80.01

注:

  • 其中RoFormerV2*表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。
  • 其中不带有pytorch后缀结果都是从GAU-alpha仓库复制过来的。
  • 其中带有pytorch后缀的结果都是自己训练得出的。

引用

Bibtex:

@techreport{gau-alpha,
  title={GAU-α: GAU-based Transformers for NLP - ZhuiyiAI},
  author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu},
  year={2022},
  url="https://github.com/ZhuiyiTechnology/GAU-alpha",
}

Tips:

  • 感谢苏神提供的模型和代码!