-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_learning_assignment1.py
433 lines (363 loc) · 17.4 KB
/
deep_learning_assignment1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 1 15:25:09 2016
@author: Karthick Perumal
"""
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import tarfile
from IPython.display import display, Image
from scipy import ndimage
from scipy.fftpack import dct
from sklearn.linear_model import LogisticRegression
from six.moves.urllib.request import urlretrieve
from six.moves import cPickle as pickle
import time
#########################################################################################################
### Download the compressed -tar-gz file
#########################################################################################################
url = 'http://commondatastorage.googleapis.com/books1000/'
last_percent_reported = None
def download_progress_hook(count, blockSize, totalSize):
""" A hook to report the progress of a download. This is mostly intended for users
with slow internet connections. reports every 1% change in donwload progress
"""
global last_percent_reported
percent = int(count*blockSize*100/totalSize)
if last_percent_reported != percent:
if percent % 5 == 0:
sys.stdout.write("%s%%" % percent)
sys.stdout.flush()
else:
sys.stdout.write(".")
sys.stdout.flush()
last_percent_reported = percent
def maybe_download(filename, expected_bytes, force = False):
""" Download a file if not present, and make sure it's the right size"""
if force or not os.path.exists(filename):
print('Attempting to download: ', filename)
filename, _ = urlretrieve(url + filename, filename, reporthook = download_progress_hook)
print('\nDownload Complete!')
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
raise Exception('Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
train_filename = maybe_download('notMNIST_large.tar.gz', 247336696)
test_filename = maybe_download('notMNIST_small.tar.gz', 8458043)
#########################################################################################################
### Extract the dataset from the compressed -tar-gz file
#########################################################################################################
num_classes = 10
np.random.seed(133)
def maybe_extract(filename, force = False):
root = os.path.splitext(os.path.splitext(filename)[0])[0] ## remove .tar.gz
if os.path.isdir(root) and not force:
### you may override by setting force = True
print('%s already present - Skipping extraction of %s.' %(root, filename))
else:
print('Extracting data for %s. This may take a while. Please wait.' % root)
tar = tarfile.open(filename)
sys.stdout.flush()
tar.extractall()
tar.close()
data_folders = [os.path.join(root, d) for d in sorted(os.listdir(root)) if os.path.isdir(os.path.join(root, d))]
if len(data_folders) != num_classes:
raise Exception('Expected %d folders, one per class. Found %d instead.' %(num_classes, len(data_folders)))
print(data_folders)
return data_folders
train_folders = maybe_extract(train_filename)
test_folders = maybe_extract(test_filename)
#########################################################################################################
### Peek at some of the data
#########################################################################################################
image_size = 28 #pixel width and height
pixel_depth = 255.0 # number of levels per pixel
def load_letter(folder, min_num_images):
"""Load the data for a single letter label"""
image_files = os.listdir(folder)
#print(image_files)
dataset = np.ndarray(shape = (len(image_files), image_size, image_size), dtype = np.float32)
print(folder)
num_images = 0
for image in image_files:
image_file = os.path.join(folder, image)
try:
image_data = (ndimage.imread(image_file).astype(float) - pixel_depth/2)/pixel_depth
if image_data.shape != (image_size, image_size):
raise Exception('Unexpected image shape: %s' %str(image_data.shape))
dataset[num_images, :, :] = image_data
num_images = num_images + 1
except IOError as e:
print('Could not read: ', image_file, ':', e, '- it\'s ok, skipping.')
dataset = dataset[0: num_images, :, :]
if num_images < min_num_images:
raise Exception('Fewer images than expected: %d < %d' % (num_images, min_num_images))
print('Full dataset tensor: ', dataset.shape)
print('Mean: ', np.mean(dataset))
print('Standard deviation: ', np.std(dataset))
return dataset
def maybe_pickle(data_folders, min_num_images_per_class, force = False):
dataset_names = []
for folder in data_folders:
set_filename = folder + '.pickle'
dataset_names.append(set_filename)
if os.path.exists(set_filename) and not force:
## You may override by setting force = True
print('%s already present - Skipping pickling.' %set_filename)
else:
print('Pickling %s.' % set_filename)
dataset = load_letter(folder, min_num_images_per_class)
try:
with open(set_filename, 'wb') as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
except Exception as e:
print('Unable to save data to', set_filename, ':', e)
return dataset_names
train_datasets = maybe_pickle(train_folders, 45000)
test_datasets = maybe_pickle(test_folders, 1800)
#########################################################################################################
### Problem 2: Display a sample of the labels and images from the ndarray. Hint: you can use matplotlib.pyplot
#########################################################################################################
"""
import random
import glob2
def display_sample():
print(" ----- ")
fig = plt.figure(1)
for i, pickle_file in enumerate(sorted(glob2.glob('D:/Data analysis/udacity/notMNIST_small/*.pickle'))):
with open(pickle_file, 'rb') as p:
data = pickle.load(p)
print('Shape of {0} is {1}'.format(str(p)[-10:-2], data.shape))
a = fig.add_subplot(2, 5, i+1)
plt.imshow(data[random.randrange(len(data))])
a.set_title(str(p)[-10:-9])
plt.show()
plt.suptitle('Randomized data')
display_sample()
#########################################################################################################
### Problem 3: Another check: we expect the data to be balanced across classes. Verify that.
#########################################################################################################
for pickle_file in sorted(glob2.glob('D:/Data analysis/udacity/notMNIST_small/*.pickle')):
with open(pickle_file, 'rb') as p:
data = pickle.load(p)
print('{0} test data count is {1}'.format(str(p)[-10:-2], data.shape))
for pickle_file in sorted(glob2.glob('D:/Data analysis/udacity/notMNIST_large/*.pickle')):
with open(pickle_file, 'rb') as p:
data = pickle.load(p)
print('{0} train data count is {1}'.format(str(p)[-10:-2], data.shape))
#########################
def make_arrays(nb_rows, img_size):
if nb_rows:
dataset = np.ndarray((nb_rows, img_size, img_size), dtype = np.float32)
labels = np.ndarray(nb_rows, dtype = np.int32)
else:
dataset, labels = None, None
return dataset, labels
def merge_datasets(pickle_files, train_size, valid_size = 0):
num_classes = len(pickle_files)
valid_dataset, valid_labels = make_arrays(valid_size, image_size)
train_dataset, train_labels = make_arrays(train_size, image_size)
vsize_per_class = valid_size // num_classes
tsize_per_class = train_size // num_classes
start_v, start_t = 0, 0
end_v, end_t = vsize_per_class, tsize_per_class
end_l = vsize_per_class + tsize_per_class
for label, pickle_file in enumerate(pickle_files):
try:
with open(pickle_file, 'rb') as f:
letter_set = pickle.load(f)
## Let's shuffle the letters to have random validation and training set
np.random.shuffle(letter_set)
if valid_dataset is not None:
valid_letter = letter_set[:vsize_per_class, :, :]
valid_dataset[start_v:end_v, :, :] = valid_letter
valid_labels[start_v:end_v] = label
start_v += vsize_per_class
end_v += vsize_per_class
train_letter = letter_set[vsize_per_class:end_l, :, :]
train_dataset[start_t:end_t, :, :] = train_letter
train_labels[start_t:end_t] = label
start_t += tsize_per_class
end_t += tsize_per_class
except Exception as e:
print('Unable to process data from', pickle_file, ':', e)
raise
return valid_dataset, valid_labels, train_dataset, train_labels
train_size = 200000
valid_size = 10000
test_size = 10000
valid_dataset, valid_labels, train_dataset, train_labels = merge_datasets(train_datasets, train_size, valid_size)
_, _, test_dataset, test_labels = merge_datasets(test_datasets, test_size)
print('Training: ', train_dataset.shape, train_labels.shape)
print('Validation: ', valid_dataset.shape, valid_labels.shape)
print('Testing: ', test_dataset.shape, test_labels.shape)
### Next we'll randomize the data- It's important to have the labels well shuffled for the training and test distributions to match
def randomize(dataset, labels):
permutation = np.random.permutation(labels.shape[0])
shuffled_dataset = dataset[permutation, :, :]
shuffled_labels = labels[permutation]
return shuffled_dataset, shuffled_labels
train_dataset, train_labels = randomize(train_dataset, train_labels)
test_dataset, test_labels = randomize(test_dataset, test_labels)
valid_dataset, valid_labels = randomize(valid_dataset, valid_labels)
#########################################################################################################
### Problem 4: Convince yourself that the data is still good after shuffling
#########################################################################################################
fig = plt.figure(2)
for i in range(10):
fig.add_subplot(2, 5, i+1)
plt.imshow(train_dataset[random.randint(i*20000, (i +1)*20000)])
plt.show()
plt.suptitle('Randomized data')
pickle_file = 'notMNIST.pickle'
try:
f = open(pickle_file, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'valid_dataset': valid_dataset,
'valid_labels': valid_labels,
'test_dataset': test_dataset,
'test_labels': test_labels,
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to ', pickle_file, ':', e)
raise
statinfo = os.stat(pickle_file)
print('Compressed pickle size: ', statinfo.st_size)
"""
#########################################################################################################
### Problem 5: Convince yourself that the data is still good after shuffling
#########################################################################################################
"""
By construction, this dataset might contain a lot of overlapping samples, including training data
that's also contained in the validation and test set! Overlap between training and test can skew
the results if you expect to use your model in an environment where there is never an overlap,
but are actually ok if you expect to see training samples recur when you use it. Measure how much
overlap there is between training, validation and test samples.
Optional questions:
What about near duplicates between datasets? (images that are almost identical)
Create a sanitized validation and test set, and compare your accuracy on those in subsequent assignments.
"""
"""
from hashlib import md5 as m
#def count_exact_duplicates(dataset1, dataset2):
# print(len(dataset1), len(dataset2))
# hashes_1 = set(m(img).hexdigest() for img in dataset1)
# hashes_2 = set(m(img).hexdigest() for img in dataset2)
# overlap = {}
# for i, hash1 in enumerate(hashes_1):
# for j, hash2 in enumerate(hashes_2):
# if hash1== hash2:
# if not i in overlap.keys():
# overlap[i] = []
# overlap[i].append(j)
# #plt.imshow(hash1)
# #break
# print(len(overlap))
# return
#
def count_exact_duplicates1(dataset1, dataset2): ### Same function as above, but to display the matches
print(len(dataset1), len(dataset2))
overlap = {}
start_time = time.time()
for i, img1 in enumerate(dataset1):
for j, img2 in enumerate(dataset2):
if m(img1).hexdigest()== m(img2).hexdigest():
if not i in overlap.keys():
overlap[i] = []
overlap[i].append(j)
# print(i, j)
# fig = plt.figure() ### Uncomment to see an example display
# fig.add_subplot(1,2,1)
# plt.imshow(img1)
# fig.add_subplot(1,2,2)
# plt.imshow(img2)
# return
print("Loop Executed in " +str( (time.time() - start_time)) + " seconds..." )
print(len(overlap))
return
with open('notMNIST.pickle', 'rb') as p:
pd = pickle.load(p)
count_exact_duplicates1(pd['test_dataset'], pd['train_dataset']) ##1153 ## 1
count_exact_duplicates1(pd['valid_dataset'], pd['train_dataset']) ## 953 ## 1
count_exact_duplicates1(pd['test_dataset'], pd['valid_dataset']) ## 55 ## 1 200
################## Problem 5: Optional - almost identical ###################
import imagehash
from PIL import Image as im
def count_almost_duplicates(dataset1, dataset2):
overlap = {}
#print(time.time())
start_time = time.time()
for i, img1 in enumerate(dataset1):
for j, img2 in enumerate(dataset2):
h1 = imagehash.phash(im.fromarray(img1, mode = 'L'))
h2 = imagehash.phash(im.fromarray(img2, mode = 'L'))
if ((h1-h2)/len(h1.hash)**2) < 0.05:
if not i in overlap.keys():
overlap[i] = []
overlap[i].append(j)
fig = plt.figure() ### Uncomment to see an example display
fig.add_subplot(1,2,1)
plt.imshow(img1)
fig.add_subplot(1,2,2)
plt.imshow(img2)
print(len(overlap))
print("Loop Executed in " +str( (time.time() - start_time)) + " seconds..." )
return
with open('notMNIST.pickle', 'rb') as p:
pd = pickle.load(p)
count_almost_duplicates(pd['test_dataset'], pd['valid_dataset'])
count_almost_duplicates(pd['test_dataset'], pd['train_dataset']) ##1153 ## 1
count_almost_duplicates(pd['valid_dataset'], pd['train_dataset'])
#print(imagehash.average_hash(pd['test_dataset'][11]))
"""
#################### Probelm 5: Optional -sanitize
#def sanitized()
#########################################################################################################
### Problem 6: Train a simple model on this data using 50, 100, 1000 and 5000 training samples.
### Hint : You can use the logistic regression model from sklearn.linear_model
#########################################################################################################
with open('notMNIST.pickle', 'rb') as p:
pd = pickle.load(p)
train_dataset = pd['train_dataset']
train_labels = pd['train_labels']
test_dataset = pd['test_dataset']
test_labels = pd['test_labels']
print(train_dataset.shape)
print(train_labels.shape)
print(test_dataset.shape)
print(test_labels.shape)
model = LogisticRegression()
X_test = test_dataset.reshape(test_dataset.shape[0], 28 * 28)
y_test = test_labels
def apply_log_reg(sample_size):
labels = {0: 'A', 1:'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J'}
start_time = time.time()
X_train = train_dataset[:sample_size].reshape(sample_size, 28 * 28)
y_train = train_labels[:sample_size]
model.fit(X_train, y_train)
output = model.score(X_test, y_test)
print("For sample size of {}, the accuracy is {} and executed in {}".format(sample_size, output, time.time()-start_time))
#print(output)
predicted_labels = model.predict(X_train)
#print(predicted_labels)
fig = plt.figure()
for i in range(10):
fig.add_subplot(2, 5, i+1)
plt.imshow(X_train[i].reshape(28, 28))
plt.title("Predicted {}".format(labels[predicted_labels[i]]))
plt.axis('off')
plt.show()
return
apply_log_reg(10)
apply_log_reg(100)
apply_log_reg(1000)
apply_log_reg(5000)