forked from hoyeoplee/MeLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MeLU.py
125 lines (112 loc) · 5.78 KB
/
MeLU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import numpy as np
from copy import deepcopy
from torch.autograd import Variable
from torch.nn import functional as F
from collections import OrderedDict
from embeddings import item, user
class user_preference_estimator(torch.nn.Module):
def __init__(self, config):
super(user_preference_estimator, self).__init__()
self.embedding_dim = config['embedding_dim']
self.fc1_in_dim = config['embedding_dim'] * 8
self.fc2_in_dim = config['first_fc_hidden_dim']
self.fc2_out_dim = config['second_fc_hidden_dim']
self.use_cuda = config['use_cuda']
self.item_emb = item(config)
self.user_emb = user(config)
self.fc1 = torch.nn.Linear(self.fc1_in_dim, self.fc2_in_dim)
self.fc2 = torch.nn.Linear(self.fc2_in_dim, self.fc2_out_dim)
self.linear_out = torch.nn.Linear(self.fc2_out_dim, 1)
def forward(self, x, training = True):
rate_idx = Variable(x[:, 0], requires_grad=False)
genre_idx = Variable(x[:, 1:26], requires_grad=False)
director_idx = Variable(x[:, 26:2212], requires_grad=False)
actor_idx = Variable(x[:, 2212:10242], requires_grad=False)
gender_idx = Variable(x[:, 10242], requires_grad=False)
age_idx = Variable(x[:, 10243], requires_grad=False)
occupation_idx = Variable(x[:, 10244], requires_grad=False)
area_idx = Variable(x[:, 10245], requires_grad=False)
item_emb = self.item_emb(rate_idx, genre_idx, director_idx, actor_idx)
user_emb = self.user_emb(gender_idx, age_idx, occupation_idx, area_idx)
x = torch.cat((item_emb, user_emb), 1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
return self.linear_out(x)
class MeLU(torch.nn.Module):
def __init__(self, config):
super(MeLU, self).__init__()
self.use_cuda = config['use_cuda']
self.model = user_preference_estimator(config)
self.local_lr = config['local_lr']
self.store_parameters()
self.meta_optim = torch.optim.Adam(self.model.parameters(), lr=config['lr'])
self.local_update_target_weight_name = ['fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'linear_out.weight', 'linear_out.bias']
def store_parameters(self):
self.keep_weight = deepcopy(self.model.state_dict())
self.weight_name = list(self.keep_weight.keys())
self.weight_len = len(self.keep_weight)
self.fast_weights = OrderedDict()
def forward(self, support_set_x, support_set_y, query_set_x, num_local_update):
for idx in range(num_local_update):
if idx > 0:
self.model.load_state_dict(self.fast_weights)
weight_for_local_update = list(self.model.state_dict().values())
support_set_y_pred = self.model(support_set_x)
loss = F.mse_loss(support_set_y_pred, support_set_y.view(-1, 1))
self.model.zero_grad()
grad = torch.autograd.grad(loss, self.model.parameters(), create_graph=True)
# local update
for i in range(self.weight_len):
if self.weight_name[i] in self.local_update_target_weight_name:
self.fast_weights[self.weight_name[i]] = weight_for_local_update[i] - self.local_lr * grad[i]
else:
self.fast_weights[self.weight_name[i]] = weight_for_local_update[i]
self.model.load_state_dict(self.fast_weights)
query_set_y_pred = self.model(query_set_x)
self.model.load_state_dict(self.keep_weight)
return query_set_y_pred
def global_update(self, support_set_xs, support_set_ys, query_set_xs, query_set_ys, num_local_update):
batch_sz = len(support_set_xs)
losses_q = []
if self.use_cuda:
for i in range(batch_sz):
support_set_xs[i] = support_set_xs[i].cuda()
support_set_ys[i] = support_set_ys[i].cuda()
query_set_xs[i] = query_set_xs[i].cuda()
query_set_ys[i] = query_set_ys[i].cuda()
for i in range(batch_sz):
query_set_y_pred = self.forward(support_set_xs[i], support_set_ys[i], query_set_xs[i], num_local_update)
loss_q = F.mse_loss(query_set_y_pred, query_set_ys[i].view(-1, 1))
losses_q.append(loss_q)
losses_q = torch.stack(losses_q).mean(0)
self.meta_optim.zero_grad()
losses_q.backward()
self.meta_optim.step()
self.store_parameters()
return
def get_weight_avg_norm(self, support_set_x, support_set_y, num_local_update):
tmp = 0.
if self.cuda():
support_set_x = support_set_x.cuda()
support_set_y = support_set_y.cuda()
for idx in range(num_local_update):
if idx > 0:
self.model.load_state_dict(self.fast_weights)
weight_for_local_update = list(self.model.state_dict().values())
support_set_y_pred = self.model(support_set_x)
loss = F.mse_loss(support_set_y_pred, support_set_y.view(-1, 1))
# unit loss
loss /= torch.norm(loss).tolist()
self.model.zero_grad()
grad = torch.autograd.grad(loss, self.model.parameters(), create_graph=True)
for i in range(self.weight_len):
# For averaging Forbenius norm.
tmp += torch.norm(grad[i])
if self.weight_name[i] in self.local_update_target_weight_name:
self.fast_weights[self.weight_name[i]] = weight_for_local_update[i] - self.local_lr * grad[i]
else:
self.fast_weights[self.weight_name[i]] = weight_for_local_update[i]
return tmp / num_local_update