-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery-client.js
110 lines (92 loc) · 3.07 KB
/
query-client.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
const neo4j = require("neo4j-driver");
const { GoogleAuth } = require("google-auth-library");
const axios = require("axios");
// Neo4j and Google Cloud setup
const NEO4J_URI = process.env.NEO4J_URI;
const NEO4J_USER = process.env.NEO4J_USER;
const NEO4J_PASSWORD = process.env.NEO4J_PASSWORD;
const PROJECT_ID = process.env.GOOGLE_PROJECT_ID;
// Google Cloud Authentication
const auth = new GoogleAuth({
keyFilename: process.env.GOOGLE_APPLICATION_CREDENTIALS,
scopes: ["https://www.googleapis.com/auth/cloud-platform"],
});
// Initialize Neo4j driver
const driver = neo4j.driver(
NEO4J_URI,
neo4j.auth.basic(NEO4J_USER, NEO4J_PASSWORD)
);
async function getEmbedding(text) {
const LOCATION = "us-central1";
const MODEL = "textembedding-gecko@003";
const client = await auth.getClient();
const token = await client.getAccessToken();
const apiUrl = `https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL}:predict`;
const requestBody = {
instances: [{ content: text, taskType: "CLUSTERING" }],
parameters: { dimension: 768 },
};
const response = await axios.post(apiUrl, requestBody, {
headers: {
Authorization: `Bearer ${token.token}`,
"Content-Type": "application/json",
},
});
return response.data.predictions[0].embeddings;
}
async function queryNeo4j(query, params = {}) {
const session = driver.session();
try {
const result = await session.run(query, params);
return result.records;
} finally {
await session.close();
}
}
async function semanticSearch(query, limit = 5) {
const embeddingResponse = await getEmbedding(query);
// Ensure we're using the 'values' array from the embedding response
const embedding = embeddingResponse.values;
if (!Array.isArray(embedding) || embedding.length !== 768) {
throw new Error(
`Invalid embedding: expected array of 768 numbers, got ${embedding}`
);
}
const cypher = `
CALL db.index.vector.queryNodes($indexName, $k, $embedding)
YIELD node, score
RETURN node.full_name AS name, node.bio AS bio, score
ORDER BY score DESC
`;
const params = {
indexName: "bio_text_embeddings",
k: limit,
embedding: embedding,
};
const results = await queryNeo4j(cypher, params);
return results.map((record) => ({
name: record.get("name"),
bio: record.get("bio"),
score: record.get("score"), // Removed toNumber() here
}));
}
async function main() {
try {
const query = "driving cars on the moon";
console.log("Generating embedding for query...");
const results = await semanticSearch(query);
console.log("Search results:");
results.forEach((result, index) => {
console.log(`\n${index + 1}. ${result.name} (Score: ${result.score})`);
console.log(` ${result.bio ? result.bio : "No bio available"}...`);
});
} catch (error) {
console.error("Error during semantic search:", error);
if (error.response) {
console.error("API response error:", error.response.data);
}
} finally {
await driver.close();
}
}
main();